

(Fully) Homomorphic Encryption

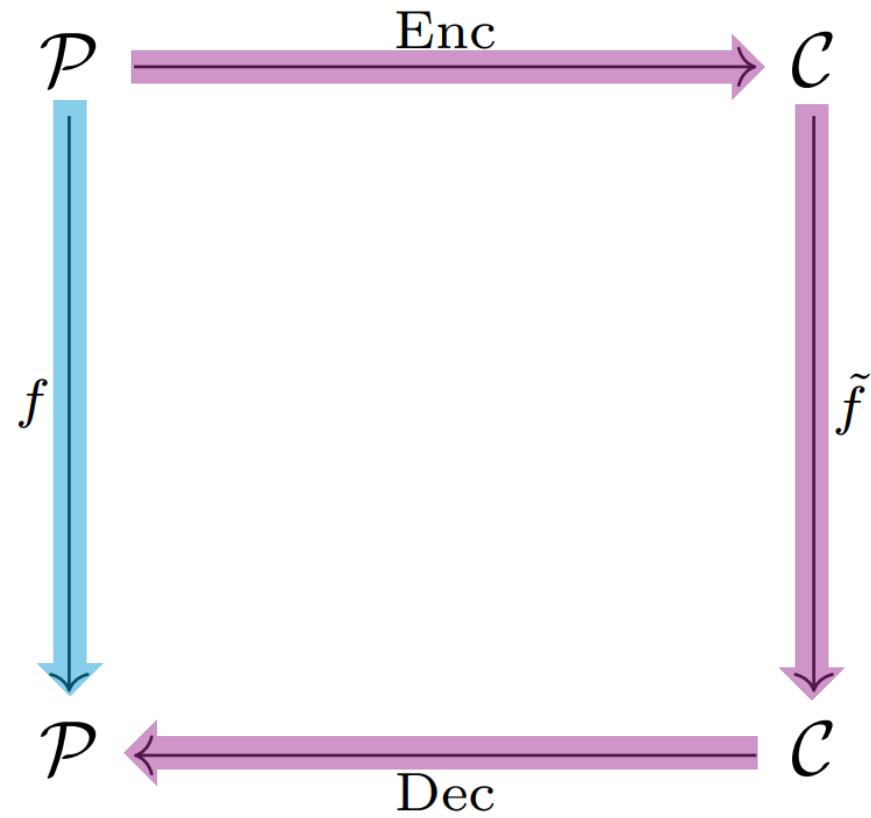
Vasco Rikkers

SCS seminar

11-04-2025

What is FHE?

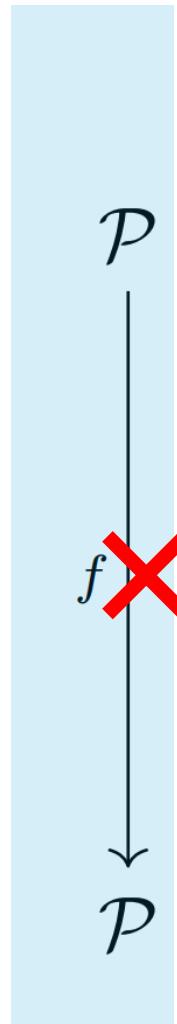
Definition 1. Let $\text{Enc}: \mathcal{P} \rightarrow \mathcal{C}$ be an encryption function, for some plaintext space \mathcal{P} and some ciphertext space \mathcal{C} . Let $\text{Dec}: \mathcal{C} \rightarrow \mathcal{P}$ be the associated decryption function. We say that the scheme $S = (\text{Enc}, \text{Dec})$ is *fully homomorphic* if for any function $f: \mathcal{P} \rightarrow \mathcal{P}$ there exists some $\tilde{f}: \mathcal{C} \rightarrow \mathcal{C}$ such that the following diagram commutes:



$$f(m) = \tilde{f}(Enc(m))$$

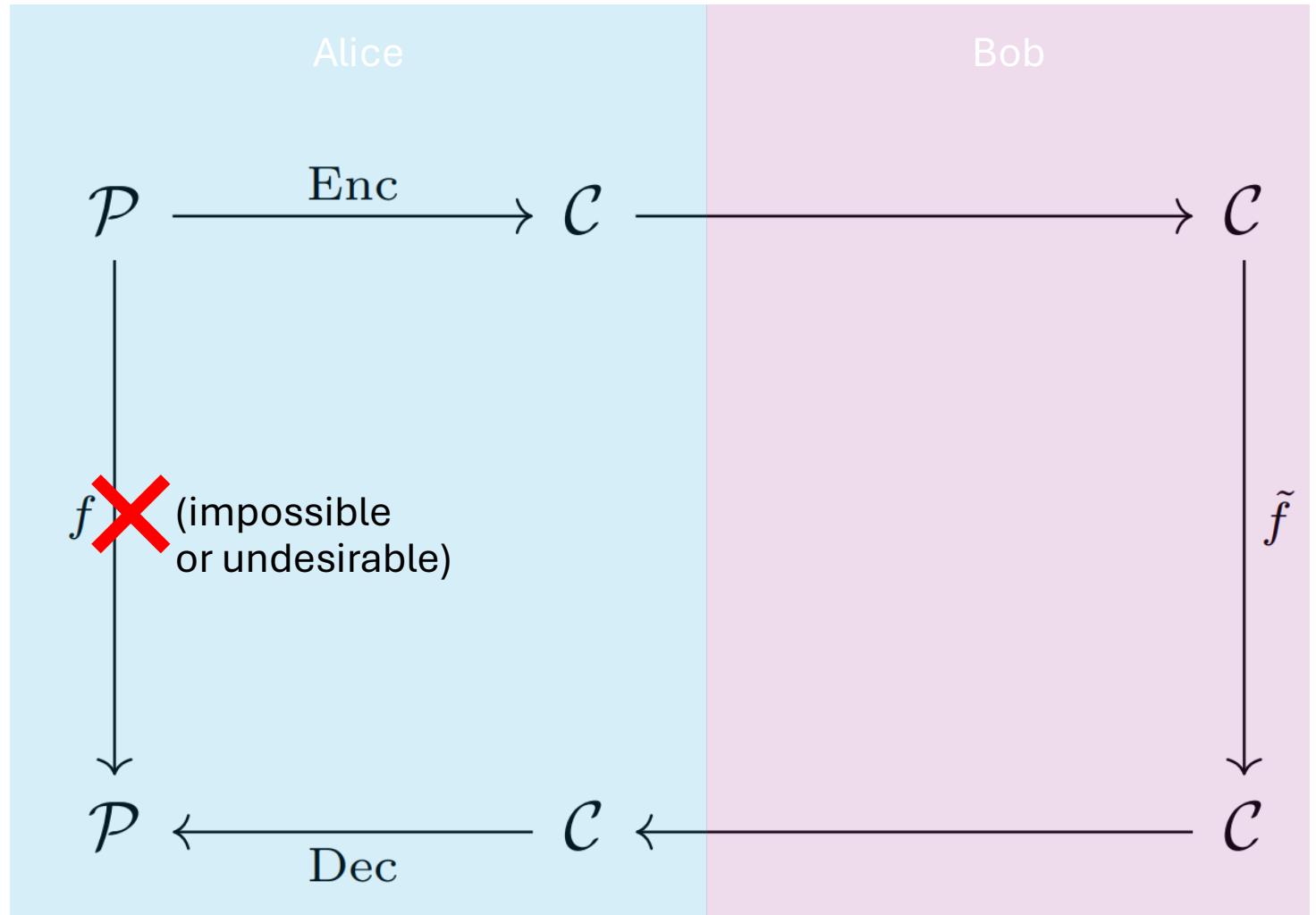
General use case

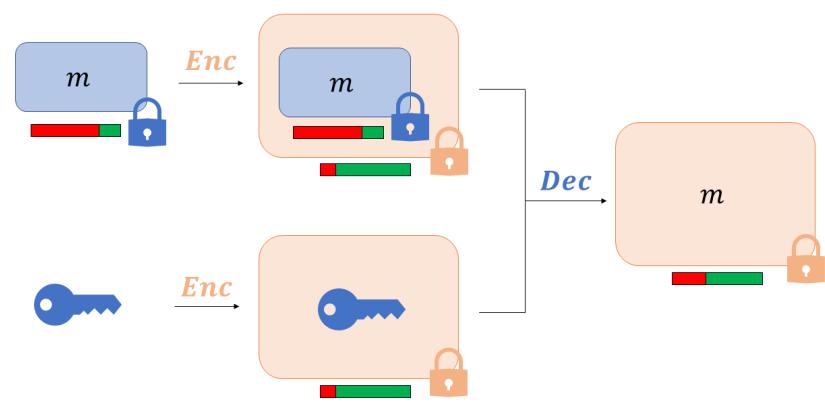
Alice cannot or does not want to calculate f herself.



General use case

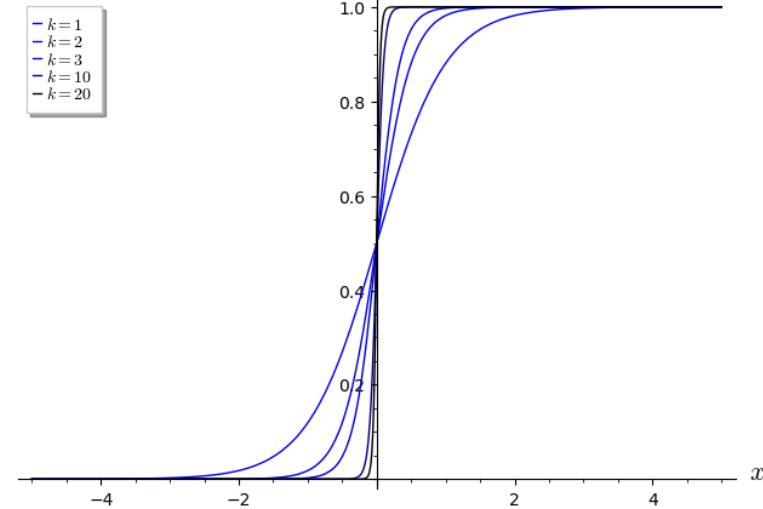
Alice cannot or does not want to calculate f herself.





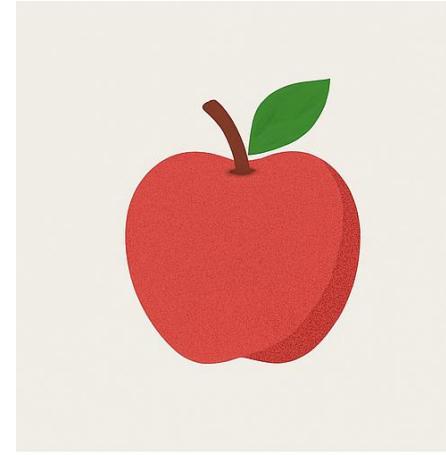
Bootstrapping

$$\frac{1}{2} + \frac{1}{2}\tanh(kx) = (1 + e^{-2kx})^{-1}$$



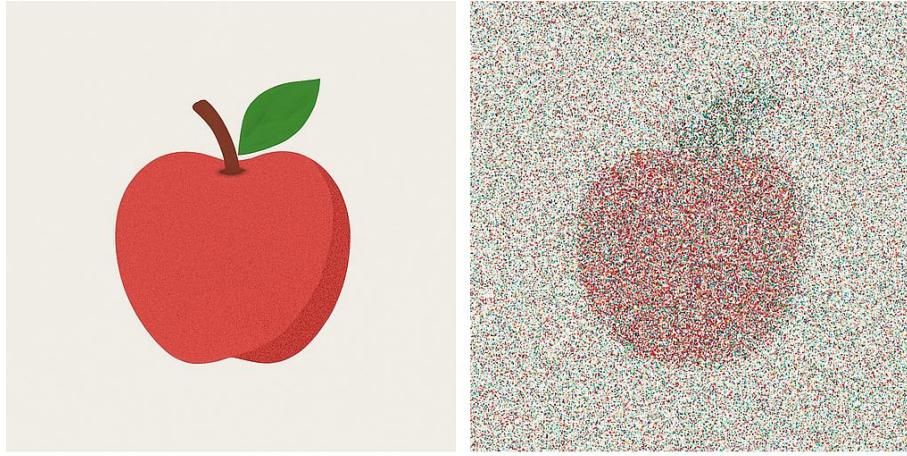
Approximation

Noise

$$\tilde{f}(Enc(m))$$


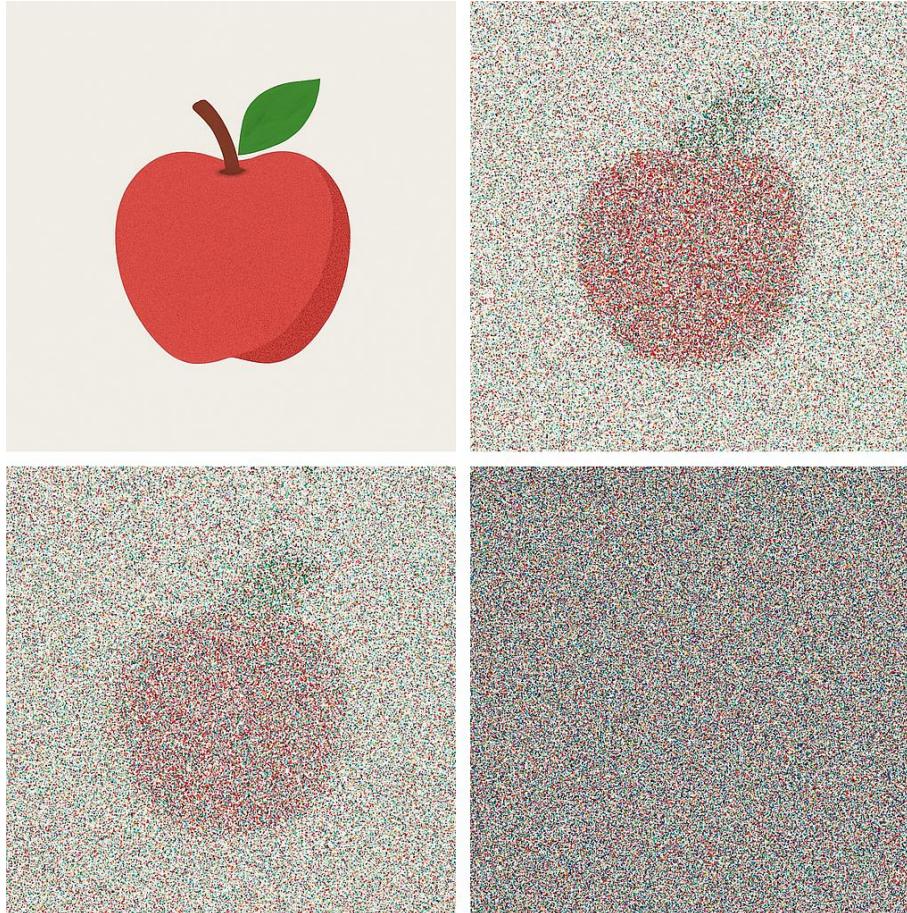
Noise

$\tilde{f}(\tilde{f}(Enc(m))$

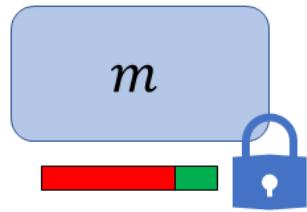


Noise

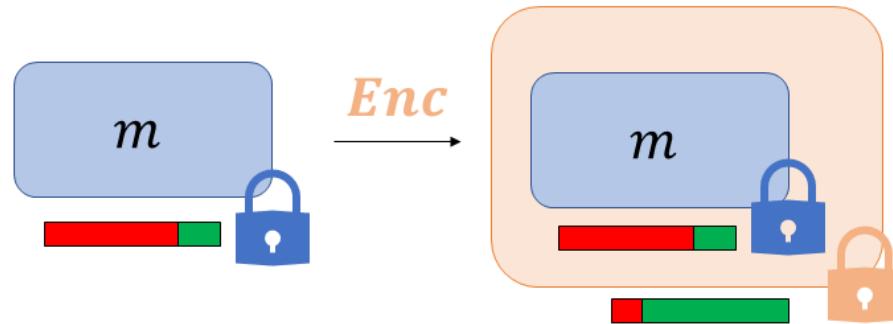
$\tilde{f}(\tilde{f}(\tilde{f}(\tilde{f}(Enc(m)))$



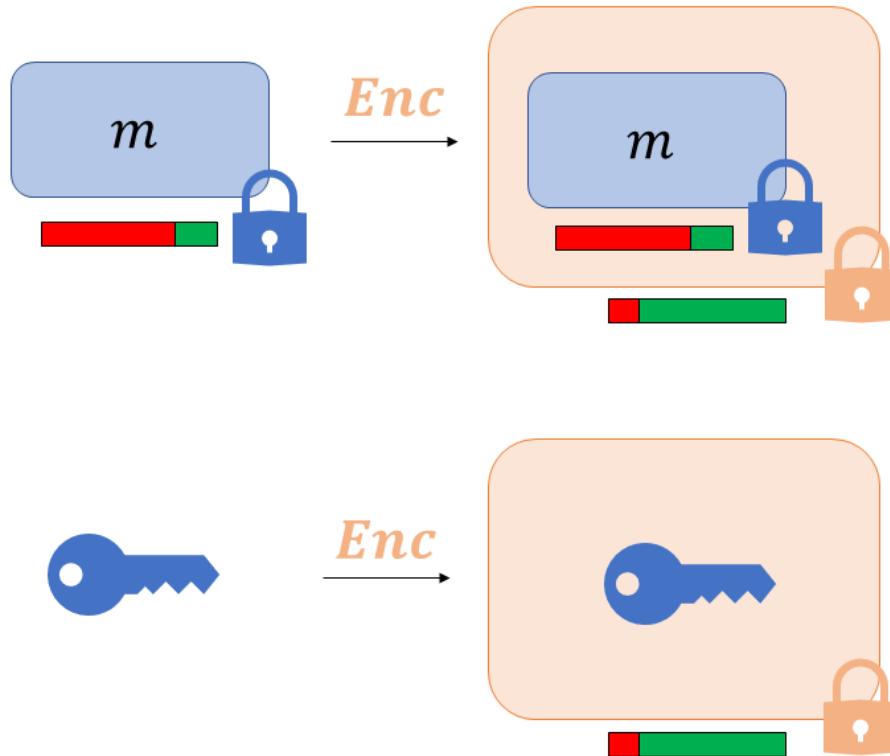
Gentry's breakthrough



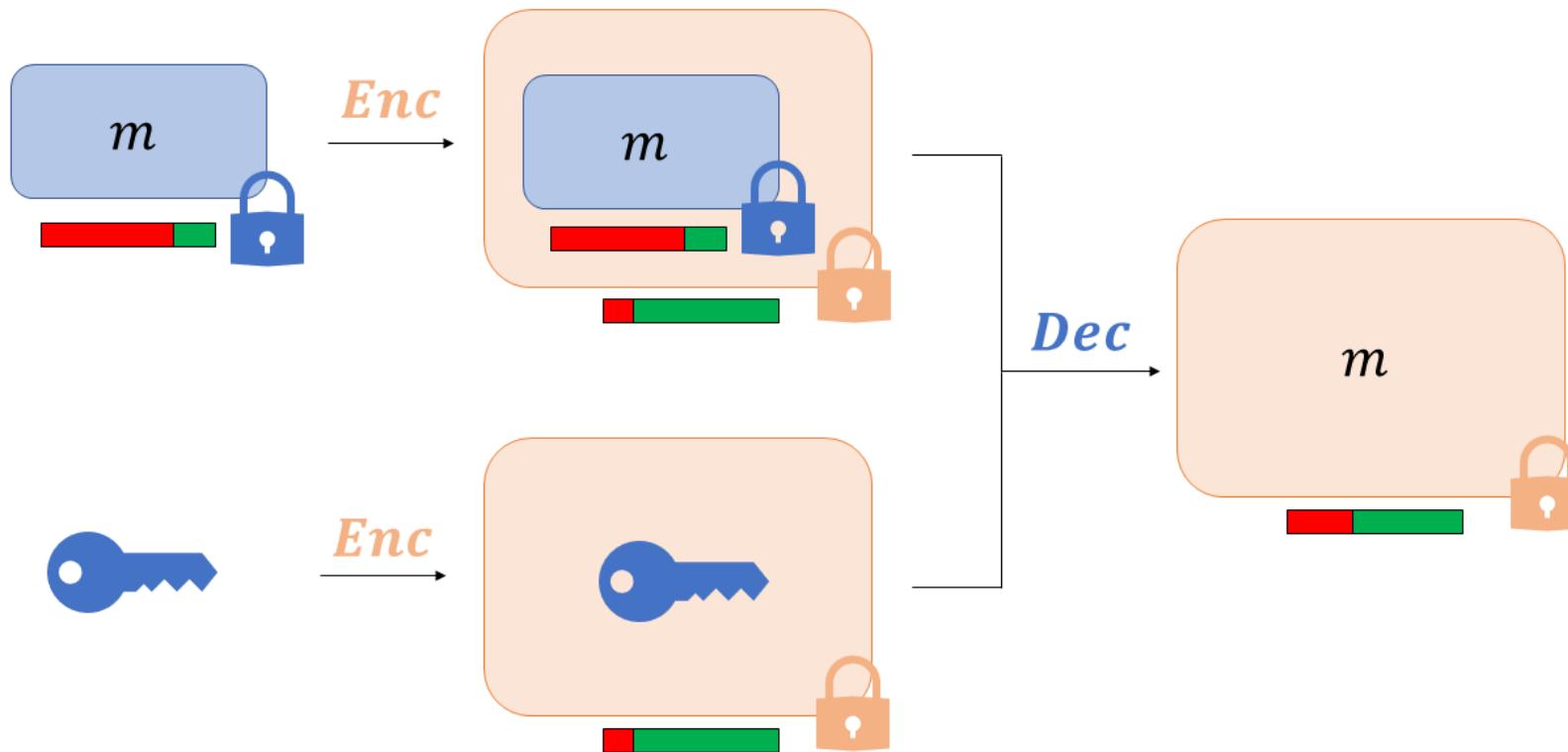
Gentry's breakthrough



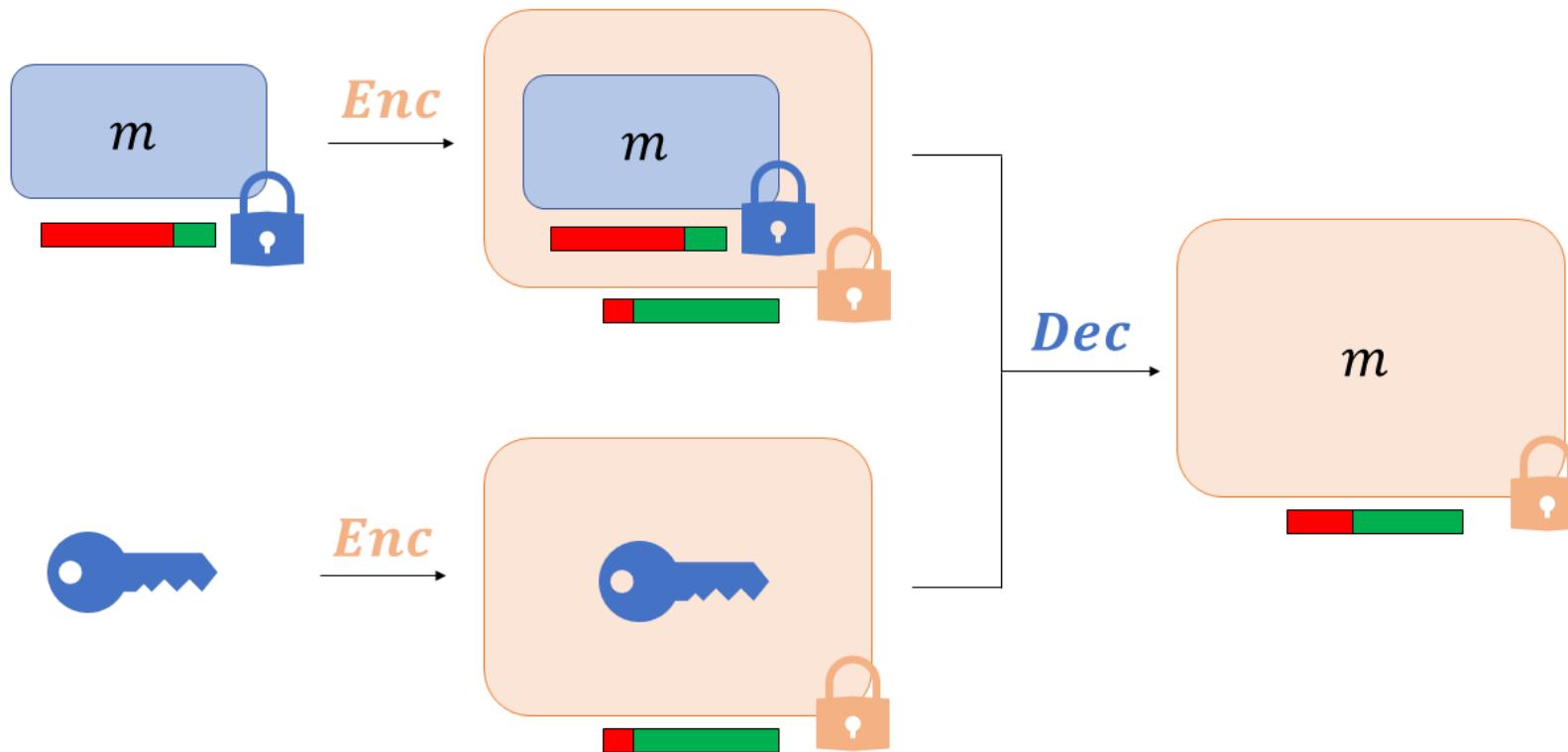
Gentry's breakthrough



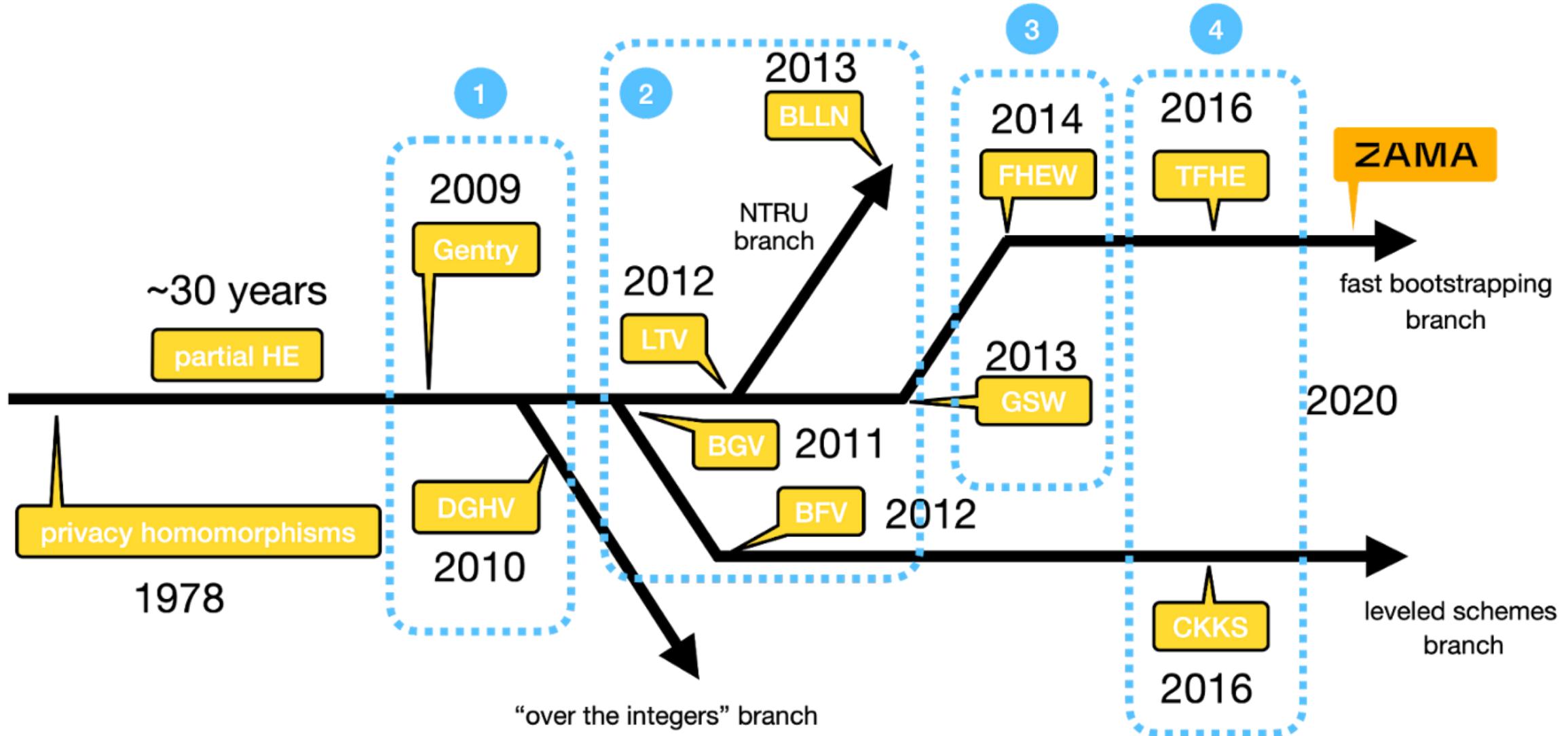
Gentry's breakthrough



Gentry's breakthrough

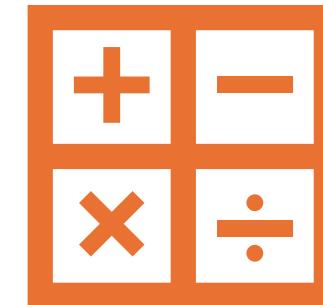


BUT BOOTSTRAPPING IS EXPENSIVE!



What \tilde{f} can we evaluate?

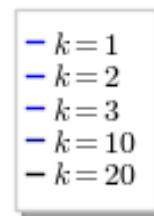
Addition



Multiplication

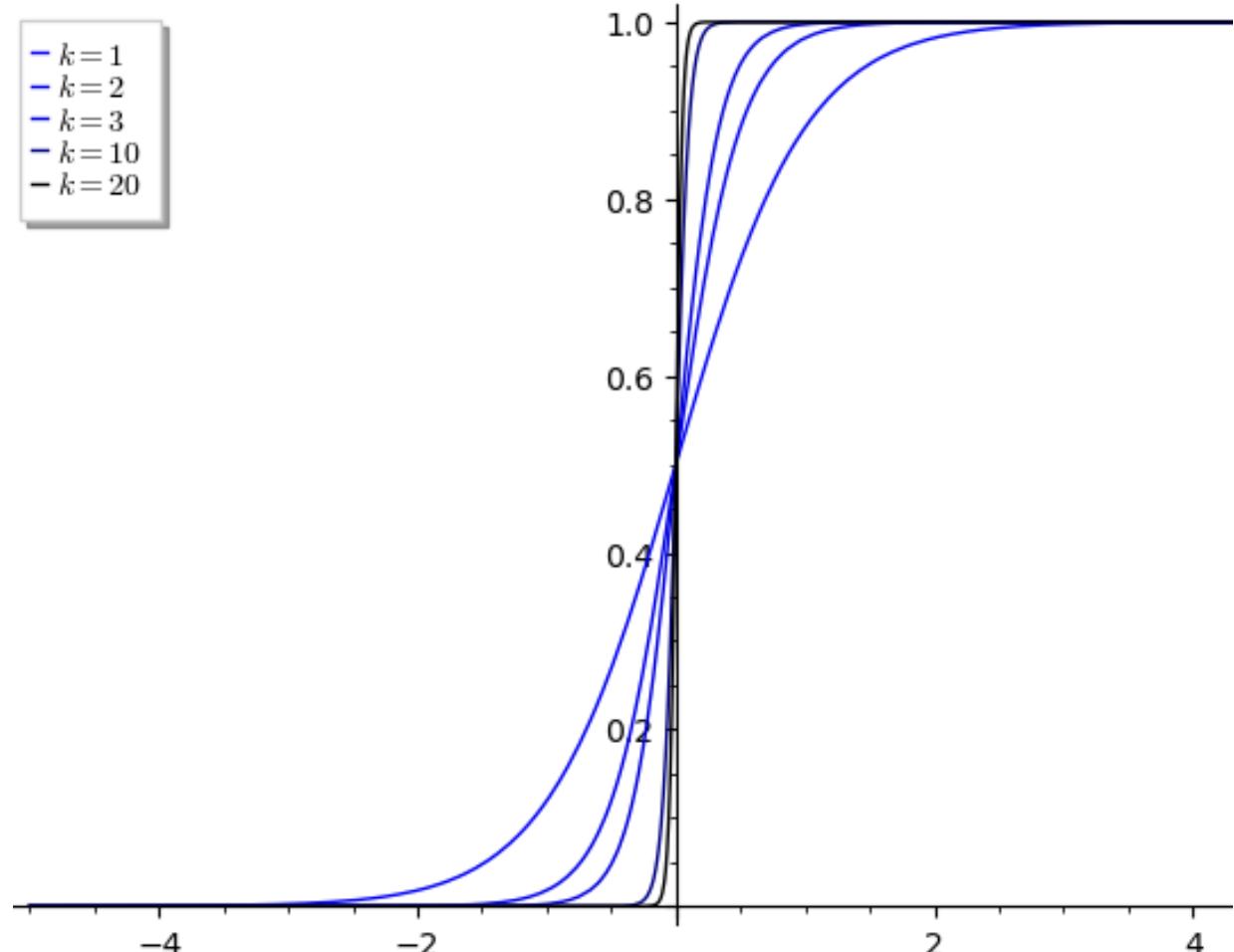
Approximation

- Express another function as a polynomial
- The more accurate we want to be, the more operations we must do

A legend box containing five entries, each with a blue line segment and a value of k:

- $k = 1$
- $k = 2$
- $k = 3$
- $k = 10$
- $k = 20$

$$\frac{1}{2} + \frac{1}{2}\tanh(kx) = (1 + e^{-2kx})^{-1}$$



Use cases

- AI / machine learning
 - See e.g. OpenAI, DeepSeek, privacy concerns
- Genome sequencing
- Cloud computing
- Blockchain
- And more!

Example— Encrypted Diabetes Prediction

🎯 Goal: Predict risk of diabetes using encrypted patient data

Use Case — Encrypted Diabetes Prediction

🎯 Goal: Predict risk of diabetes using encrypted patient data

📊 Model: Trained logistic regression

Use Case — Encrypted Diabetes Prediction

🎯 Goal: Predict risk of diabetes using encrypted patient data

📊 Model: Trained logistic regression

🔒 Data privacy

How?

1. Company sends
model to patient

2. Patient sends data to
company

Model structure: logistic regression

$$\hat{y} = \sigma(w^T x + b)$$

Model structure: logistic regression

$$\hat{y} = \sigma(w^T x + b)$$

Model structure: logistic regression

$$\hat{y} = \sigma(w^T \mathbf{x} + b)$$

x = input features (e.g.,
[glucose, BMI, age])

Model structure: logistic regression

$$\hat{y} = \sigma(\mathbf{w}^T \mathbf{x} + b)$$

\mathbf{w} = weights

\mathbf{x} = input features (e.g.,
[glucose, BMI, age])

Step 1: Calculate $w^T x + b$

Patient data $x = [x_1, x_2, x_3]$

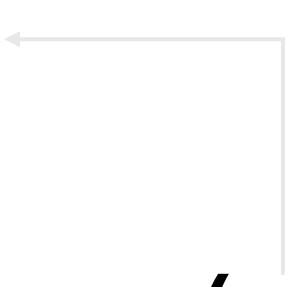
1. Encrypt $\rightarrow \text{Enc}(x_1), \text{Enc}(x_2), \text{Enc}(x_3)$

- CKKS encryption scheme

2. Compute encrypted dot product:

- $\text{Enc}(z) = \sum w_i \cdot \text{Enc}(x_i) + b$
- Weights w_i in plaintext

w = weights



x = input features (e.g.,
[glucose, BMI, age])

$$\hat{y} = \sigma(w^T x + b)$$

A diagram showing the sigmoid function $\sigma(z) = 1 / (1 + e^{-z})$ as a blue curve. The curve is a sigmoid (S-shaped) function that passes through the point (0, 0.5).

$$\sigma(z) = 1 / (1 + e^{-z})$$

Step 3: Calculate Sigmoid function

1. Approximate sigmoid with a polynomial:

- $P(z) = 0.5 + 0.197z - 0.004z^3$

2. $\text{Enc}(\hat{y}) = P(\text{Enc}(z))$

3. Server sends back $\text{Enc}(\hat{y})$

4. Patient decrypts locally:

- $\hat{y} \approx 0.87 \rightarrow \text{High risk of diabetes}$

Want to Try FHE Yourself?

Here are some beginner-friendly tools to explore:

- ✓ Python-based: Concrete ML, TenSEAL (for ML)
- 💻 C++ powerhouses: SEAL, OpenFHE, Helib (General uses)
- 🧪 Niche/experimental: TFHE, CUFHE, Lattigo (Speedups etc.)

Acknowledgements

- Zama (figure slide 16)
- Thom Sijpesteijn (diagrams slides 1-4, 10-14)
- Sam Leder (diagrams slides 1-4, 10-14)