

Bloom Filters

SCS Seminar: March 07, 2025
Florian

Agenda

What are Bloom Filters and Theoretical Analysis

My first contact: Searchable Symmetric Encryption

Application II: Private Record Linkage

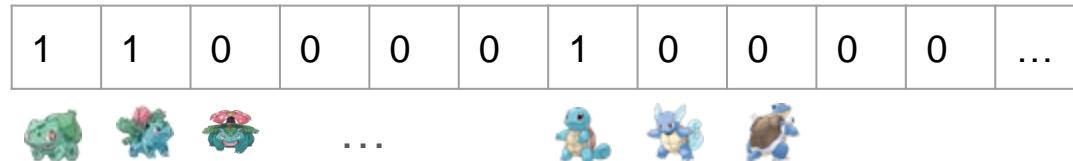
Extensions for Bloom Filters

Keyword PIR

Motivation

∈ ?

Motivation

 $\in ?$ 

There are 1025 Pokémon nowadays, so we need $\sim 1\text{kb}$ to encode this dictionary...

Motivation

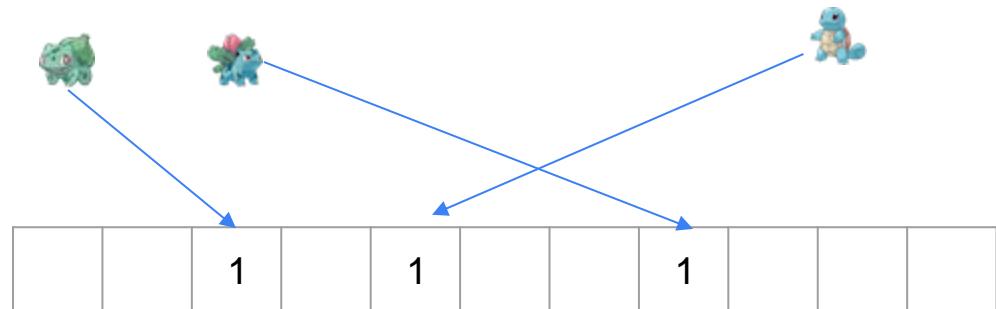
Wikipedia: Bloom filter is a space-efficient probabilistic data structure, [...] that is used to test whether an element is a member of a set.

Set dictionary size to m

Use hash function $h(\cdot)$

For each element:

Set bit at position $h(\cdot) \bmod m$



Motivation

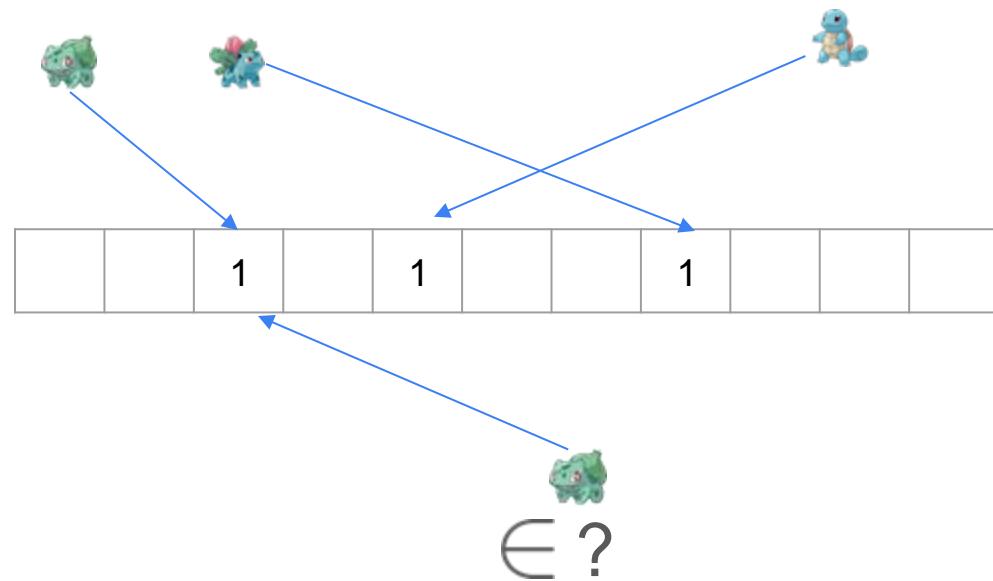
Wikipedia: Bloom filter is a space-efficient probabilistic data structure, [...] that is used to test whether an element is a member of a set.

Set dictionary size to m

Use hash function $h(\cdot)$

For each element:

Set bit at position $h(\cdot) \bmod m$



Check bit at position $h(\cdot) \bmod m$

Motivation

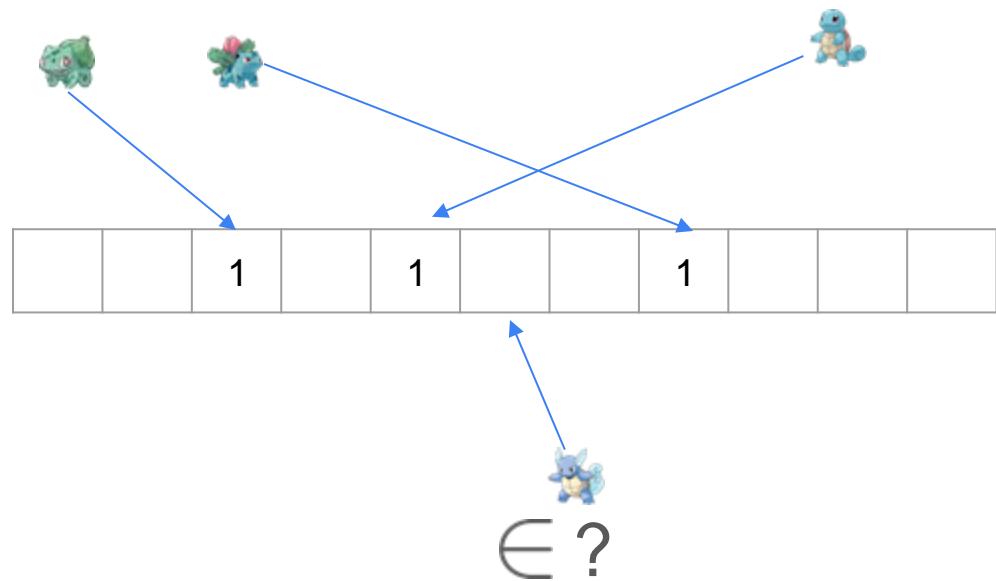
Wikipedia: Bloom filter is a space-efficient probabilistic data structure, [...] that is used to test whether an element is a member of a set.

Set dictionary size to m

Use hash function $h(\cdot)$

For each element:

Set bit at position $h(\cdot) \bmod m$



Check bit at position $h(\cdot) \bmod m$

Motivation

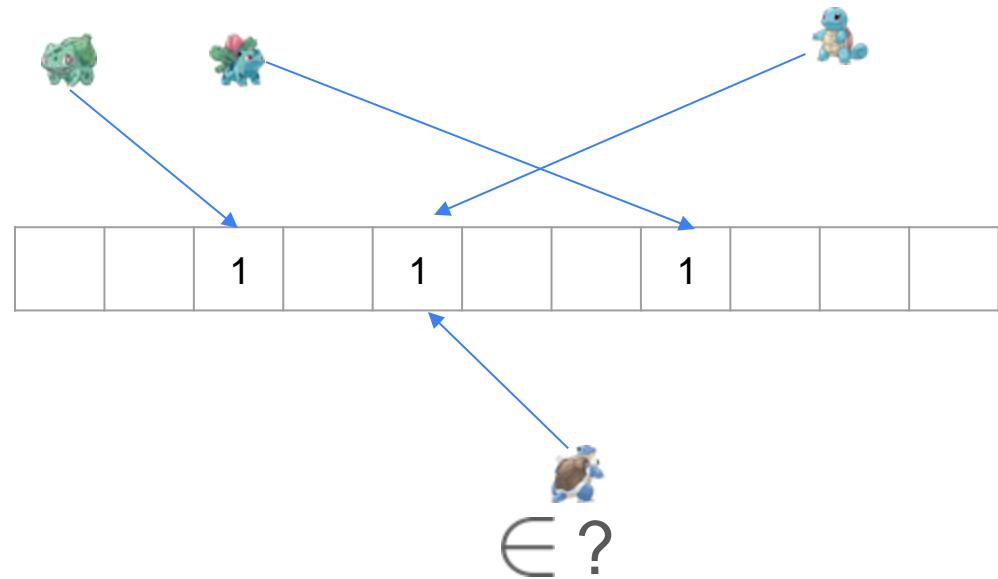
Wikipedia: Bloom filter is a space-efficient probabilistic data structure, [...] that is used to test whether an element is a member of a set.

Set dictionary size to m

Use hash function $h(\cdot)$

For each element:

Set bit at position $h(\cdot) \bmod m$



Check bit at position $h(\cdot) \bmod m$

Finally: A wild Bloom Filter appears!

Wikipedia: Bloom filter is a space-efficient probabilistic data structure, [...] that is used to test whether an element is a member of a set.

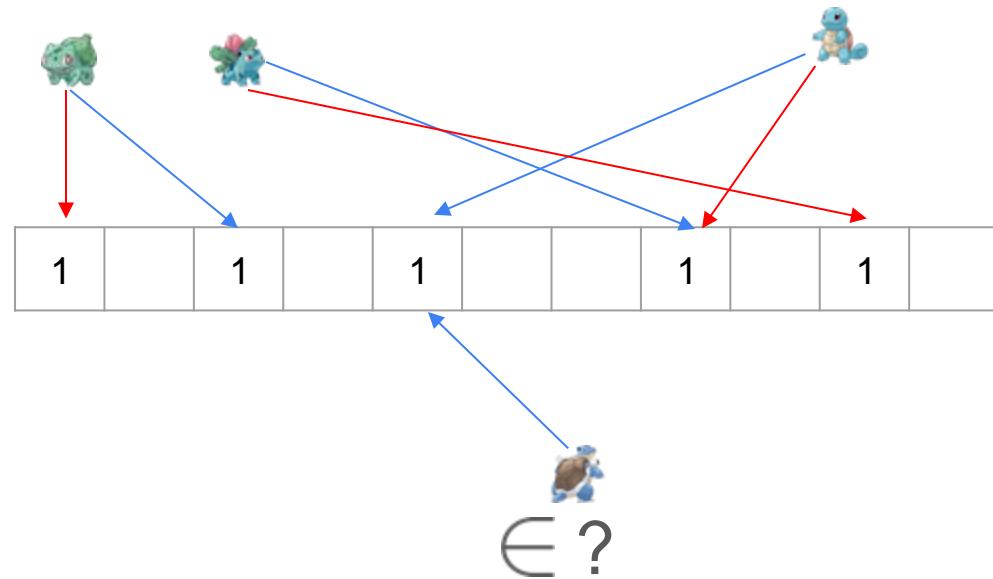
Set dictionary size to m

Use k different hash functions $h_i(\cdot)$

For each element:

For each $1 \leq i \leq k$:

Set bit at position $h_i(\cdot) \bmod m$



Finally: A wild Bloom Filter appears!

Wikipedia: Bloom filter is a space-efficient probabilistic data structure, [...] that is used to test whether an element is a member of a set.

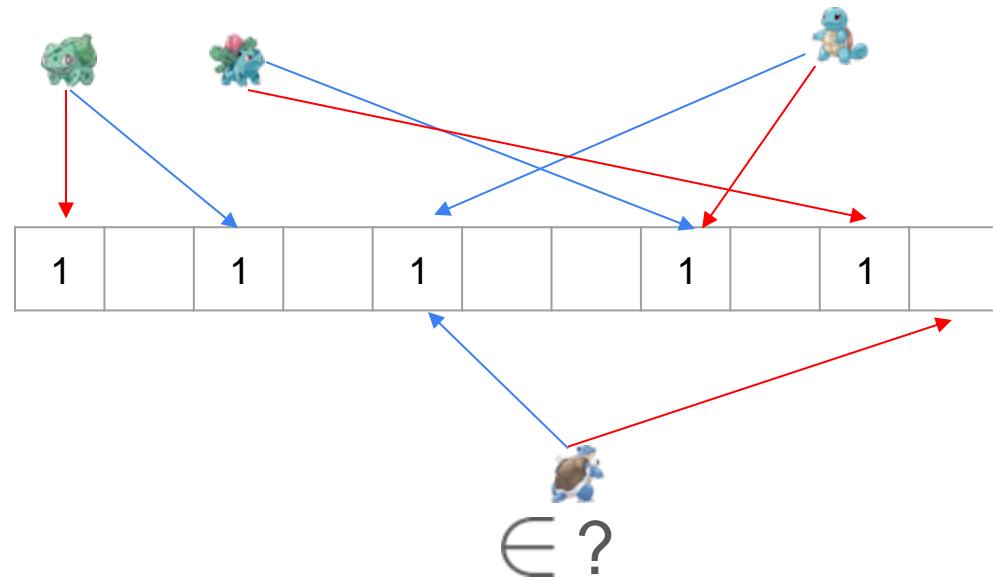
Set dictionary size to m

Use k different hash functions $h_i(\cdot)$

For each element:

For each $1 \leq i \leq k$:

Set bit at position $h_i(\cdot) \bmod m$



Check all bit positions $h_i(\cdot) \bmod m$

Return true if all positions are set

False Positive Rate

Assuming a hash function mapping to a random value in $[0, m-1]$

- $\Pr[\text{BF}[i] = 1] = \frac{1}{m}$; hence $\Pr[\text{BF}[i] = 0] = 1 - \frac{1}{m}$

For k (independent) hash functions:

- $\Pr[\text{BF}[i] = 0] = \left(1 - \frac{1}{m}\right)^k = \left(\left(1 - \frac{1}{m}\right)^m\right)^{\frac{k}{m}} \approx e^{-\frac{k}{m}}$

False Positive Rate

Assuming a hash function mapping to a random value in $[0, m-1]$

- $\Pr[\text{BF}[i] = 1] = \frac{1}{m}$; hence $\Pr[\text{BF}[i] = 0] = 1 - \frac{1}{m}$

For k (independent) hash functions:

- $\Pr[\text{BF}[i] = 0] = \left(1 - \frac{1}{m}\right)^k = \left(\left(1 - \frac{1}{m}\right)^m\right)^{\frac{k}{m}} \approx e^{-\frac{k}{m}}$

After we have inserted n elements:

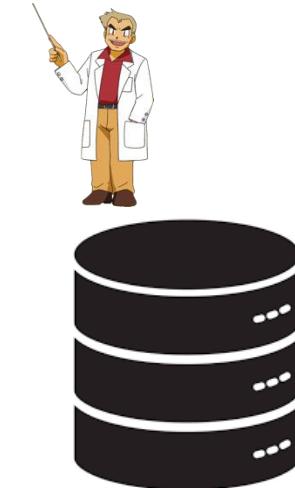
- $\Pr[\text{BF}[i] = 0] = \left(1 - \frac{1}{m}\right)^{nk} \approx e^{-\frac{nk}{m}}$; hence $\Pr[\text{BF}[i] = 1] \approx 1 - e^{-\frac{nk}{m}}$

The probability for a false positive for element requires that all k bits at $h_i(\cdot)$ are set

- $\left(1 - e^{-\frac{nk}{m}}\right)^k$

My first contact

Searchable Symmetric Encryption

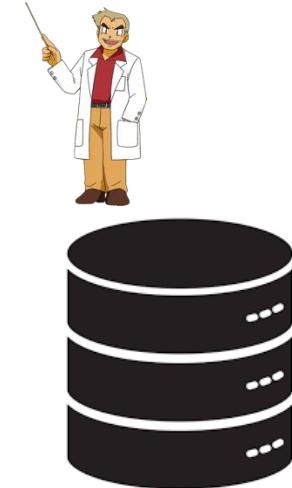


My first contact

Searchable Symmetric Encryption

Filter for all documents that contain an encrypted keyword

Identifiers of documents containing the encrypted keyword



My first contact

Searchable Symmetric Encryption

$Doc_1 = (\text{Squirtle, Bulbasaur})$
 $HMAC_1(k, \cdot), HMAC_2(k, \cdot)$

1 1 1 1 1 1 1 1 1 1

$Doc_2 = (\text{Bulbasaur, Ivysaur})$
 $HMAC_1(k, \cdot), HMAC_2(k, \cdot)$

1 1 1 1 1 1 1 1 1

My first contact

Searchable Symmetric Encryption

$HMAC_1(k, Squirtle),$
 $HMAC_2(k, Squirtle)$

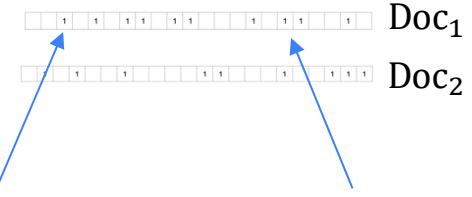
□□ 1 1 1 1 1 1 1 1 1 1 1 1 1 Doc₁

□ 1 1 1 1 1 1 1 1 1 1 1 1 1 Doc₂

My first contact

Searchable Symmetric Encryption

Doc₁



$HMAC_2(k, Squirtle)$
 $HMAC_1(k, Squirtle),$

Application II

Privacy Preserving Record Linkage

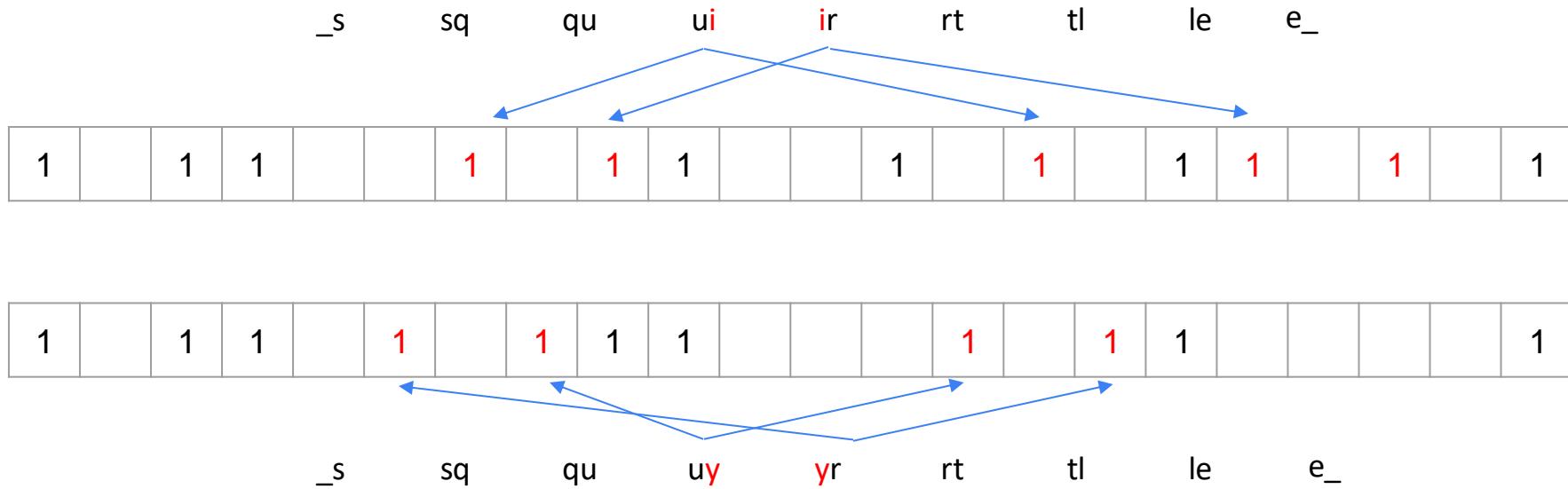
What Pokémons do they have in common?

squirtle

← Fuzzy Database Join →

Application II

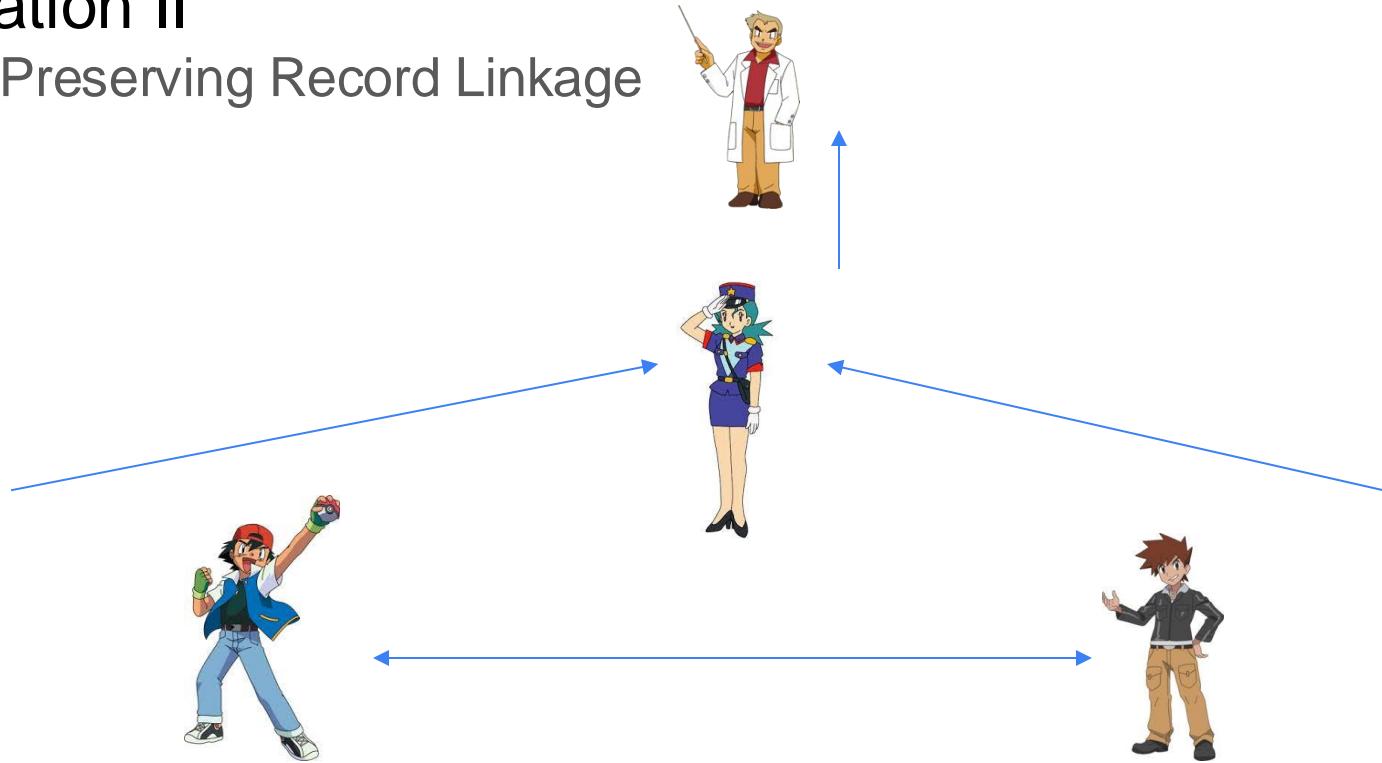
Privacy Preserving Record Linkage



Application II

Privacy Preserving Record Linkage

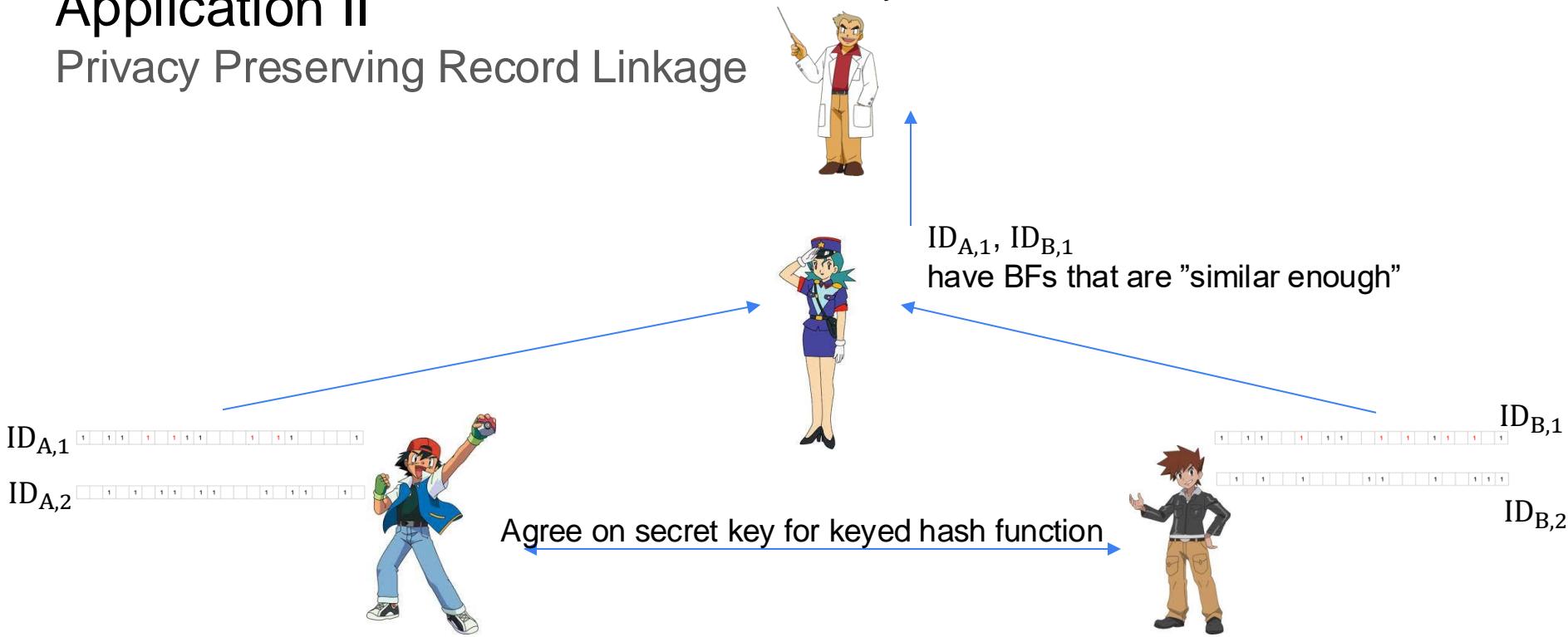
What Pokémons do they have in common?



Application II

Privacy Preserving Record Linkage

What Pokémons do they have in common?



Extension I: Counting Bloom Filters

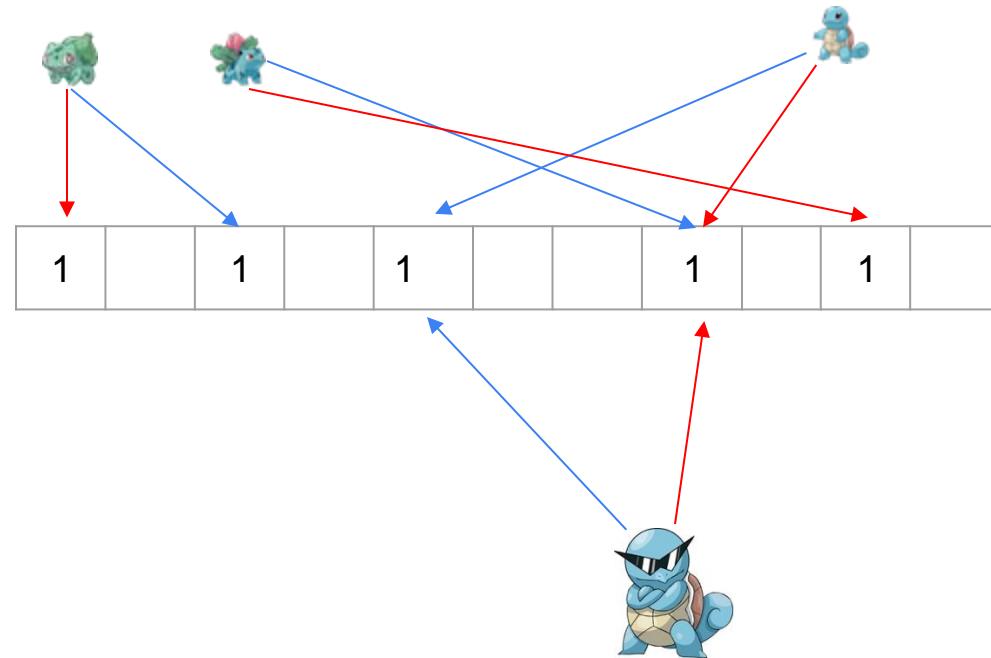
Set dictionary size to m

Use k different hash functions $h_i(\cdot)$

For each element:

For each $1 \leq i \leq k$:

Set bit at position $h_i(\cdot) \bmod m$



Extension I: Counting Bloom Filters

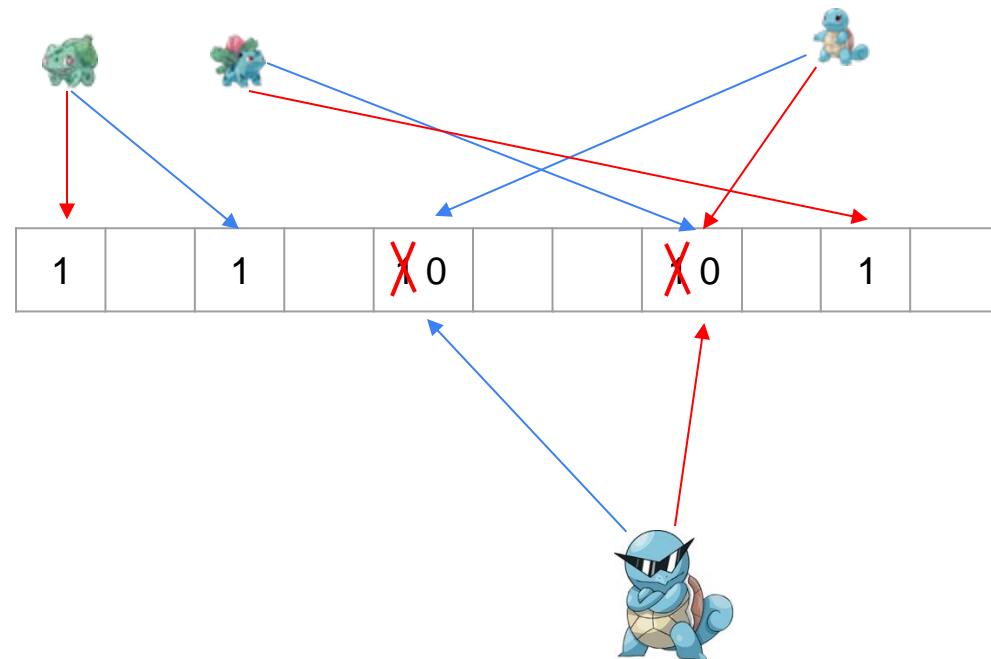
Set dictionary size to m

Use k different hash functions $h_i(\cdot)$

For each element:

For each $1 \leq i \leq k$:

Set bit at position $h_i(\cdot) \bmod m$



Extension I: Counting Bloom Filters

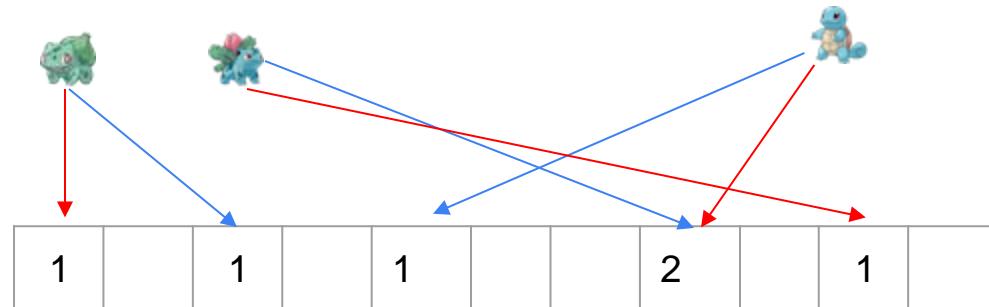
Set dictionary size to m

Use k different hash functions $h_i(\cdot)$

For each element:

For each $1 \leq i \leq k$:

Increment at position $h_i(\cdot) \bmod m$



Extension I: Counting Bloom Filters

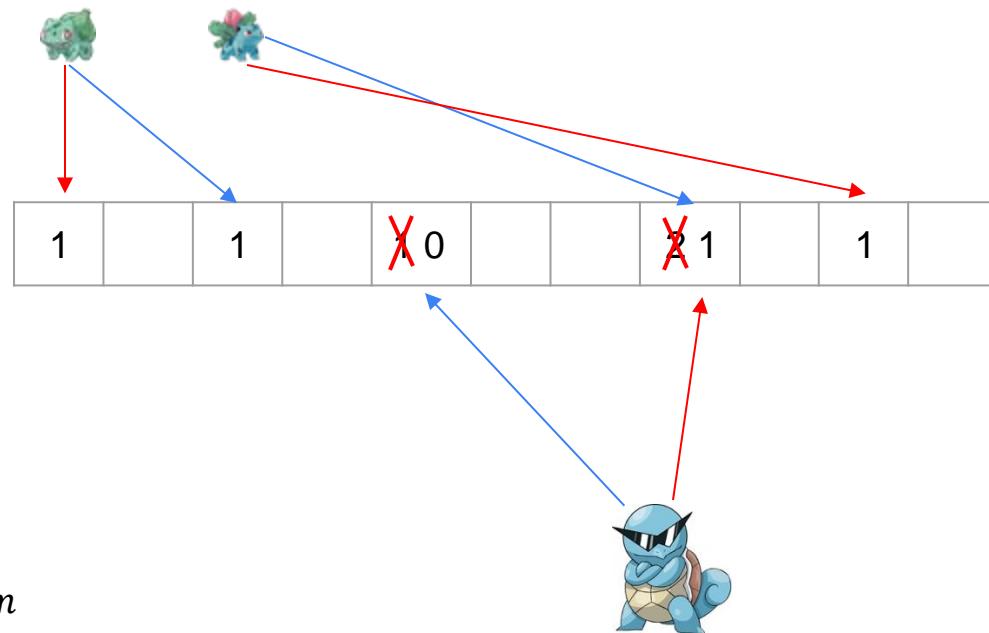
Set dictionary size to m

Use k different hash functions $h_i(\cdot)$

For each element:

For each $1 \leq i \leq k$:

Increment at position $h_i(\cdot) \bmod m$



Delete Element:

Decrement at bit positions $h_i(\cdot) \bmod m$

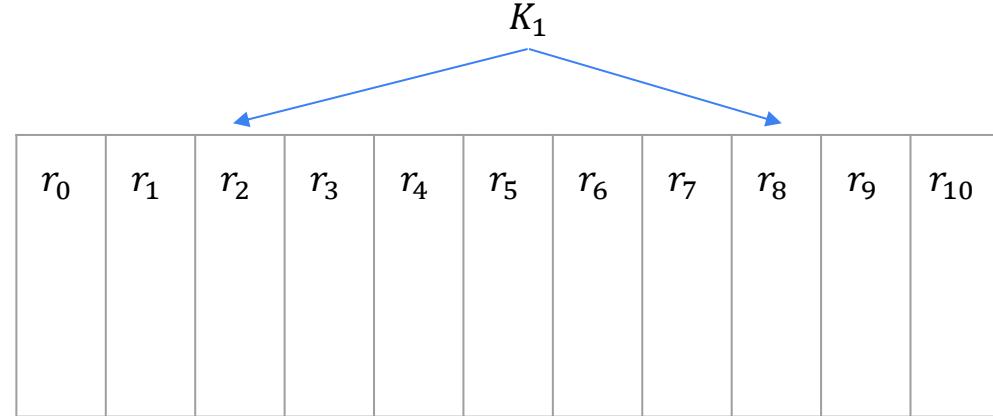
Extension II: Garbled Bloom Filters

(Key, Value) store via Bloom Filters

For (K_1, V_1) with $h_1(K_1) = 2, h_2(k_1) = 7$

Set r_2 and r_7 such that

$$r_2 + r_7 = V_1$$



Extension II: Garbled Bloom Filters

(Key, Value) store via Bloom Filters

Initialize BF F with special element \perp

For each key K_j :

$$f_j = V_j$$

For each $1 \leq i \leq k - 1$:

$$p = h_i(K_i)$$

If p :

Sample r_p and set $F[p] = r_p$

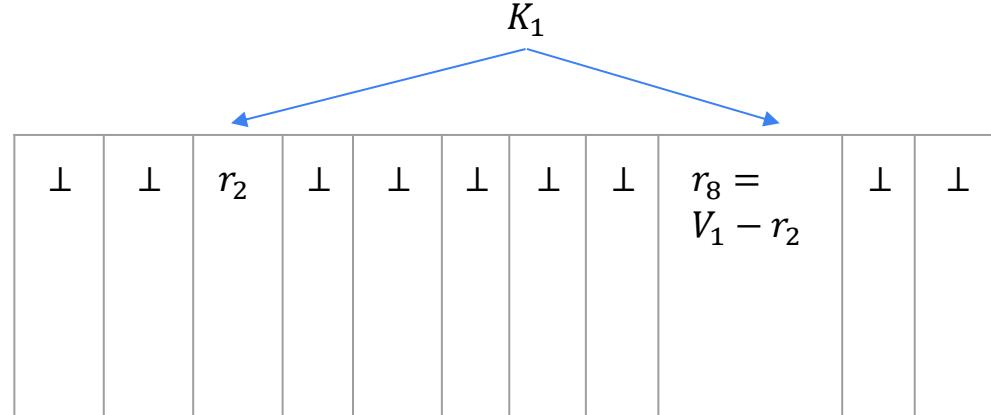
$$f_j = f_j - F[p]$$

$$p = h_k(K_j)$$

if

A

$$F[p] = f_j$$



Extension II: Garbled Bloom Filters

(Key, Value) store via Bloom Filters

Initialize BF F with special element \perp

For each key K_j :

$$f_j = V_j$$

For each $1 \leq i \leq k - 1$:

$$p = h_i(K_j)$$

If $F[p] == \perp$

Sample r_p and set $F[p] = r_p$

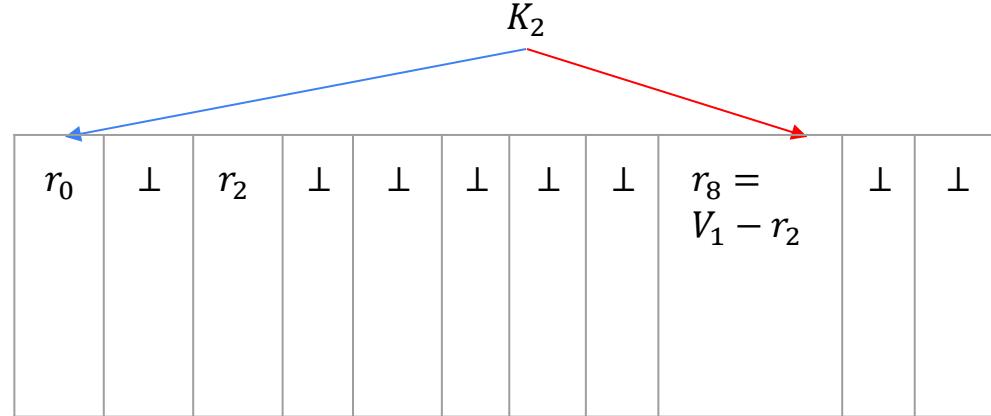
$$f_j = f_j - F[p]$$

$$p = h_k(K_j)$$

If $F[p] != \perp$

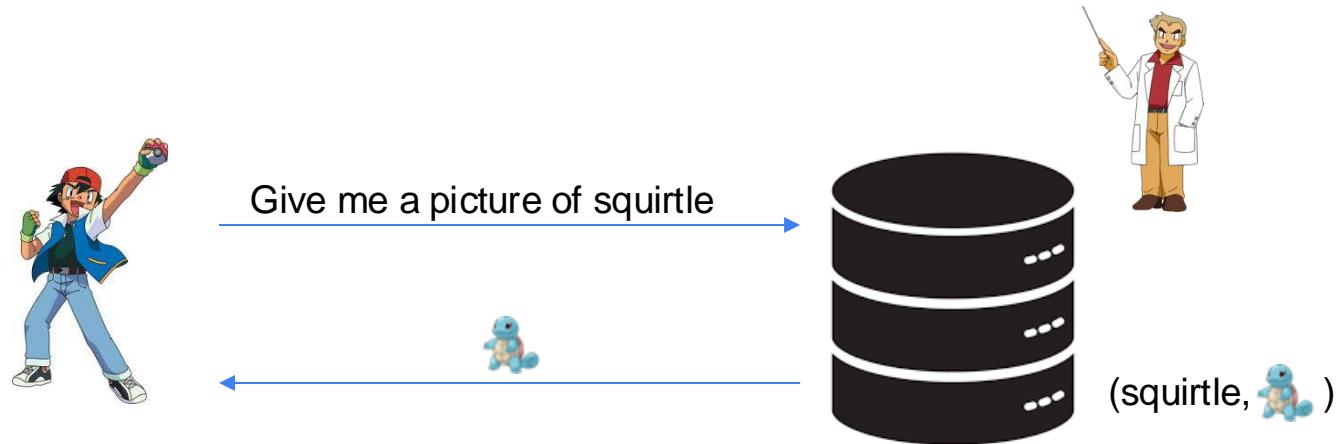
Abort with Error

$$F[p] = f_j$$



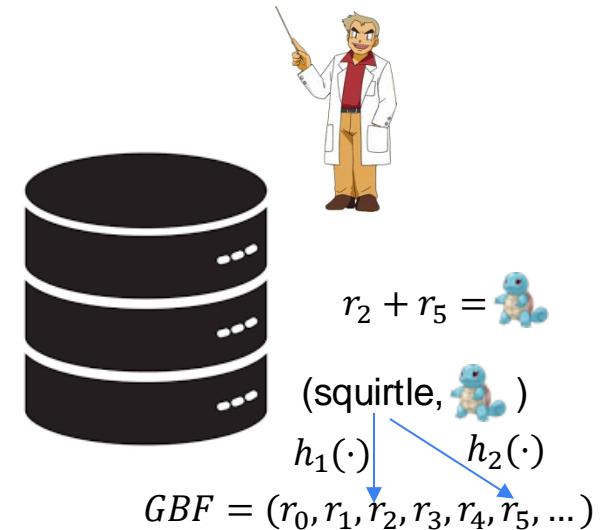
How I stumbled upon a wild Bloom Filters recently... (again!)

Keyword Private Information Retrieval



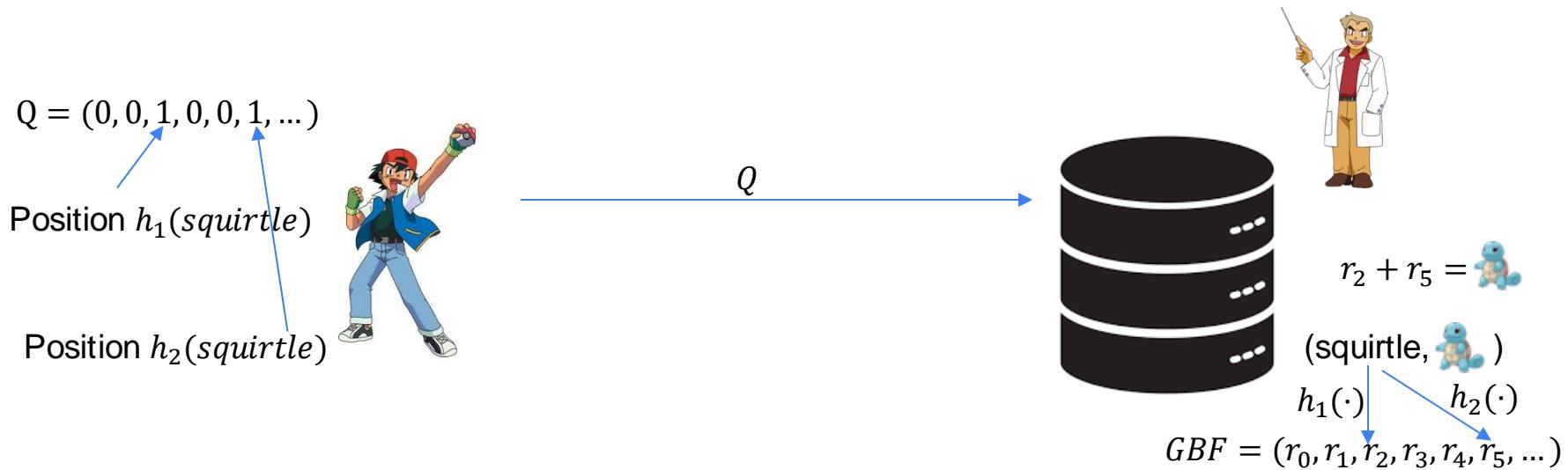
How I stumbled upon a wild Bloom Filters recently... (again!)

Keyword Private Information Retrieval: Setup



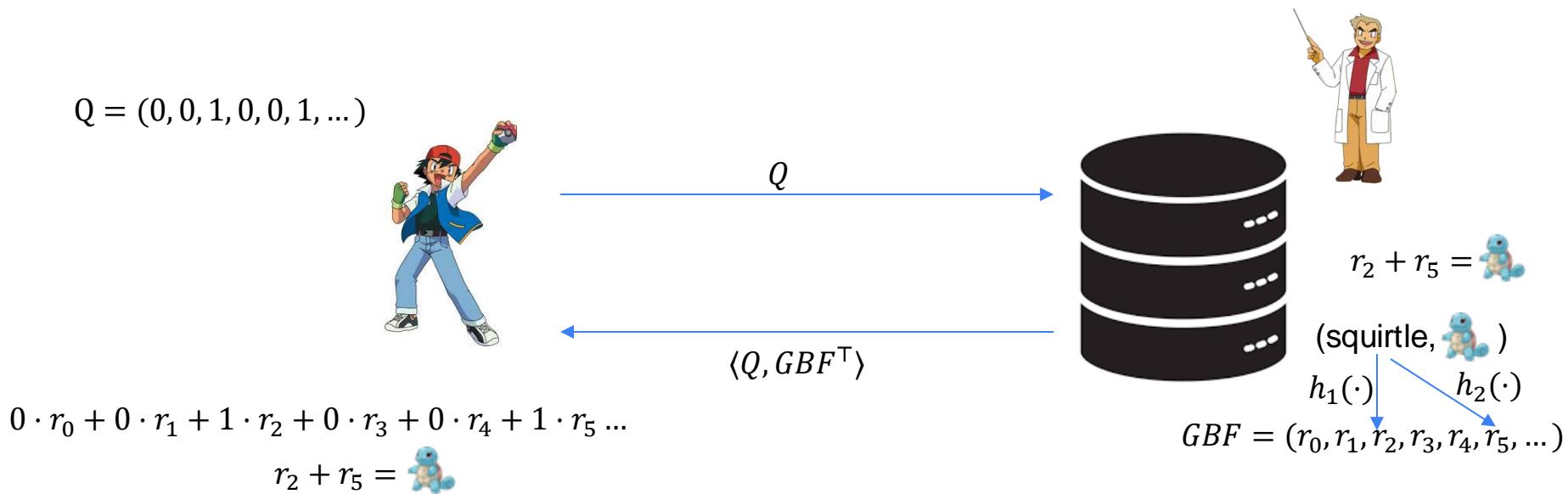
How I stumbled upon a wild Bloom Filters recently... (again!)

Keyword Private Information Retrieval: Query



How I stumbled upon a wild Bloom Filters recently... (again!)

Keyword Private Information Retrieval: Response



How I stumbled upon a wild Bloom Filters recently... (again!)

Keyword Private Information Retrieval: Now with encryption!

$$Q = (0, 0, 1, 0, 0, 1, \dots)$$

$$HomEnc(Q)$$

$$r_2 + r_5 = \text{squirtle}$$

$$(\text{squirtle}, \text{squirtle})$$

$$h_1(\cdot) \quad h_2(\cdot)$$

$$GBF = (r_0, r_1, r_2, r_3, r_4, r_5, \dots)$$

$$0 \cdot r_0 + 0 \cdot r_1 + 1 \cdot r_2 + 0 \cdot r_3 + 0 \cdot r_4 + 1 \cdot r_5 \dots$$

$$Dec(HomEnc(\langle Q, GBF^\top \rangle)) = r_2 + r_5 = \text{squirtle}$$

Thanks!

