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How Does DP Work?
• Differential privacy adds noise to a function, hiding how much an 

individual data point can influence the result.

Image by Joseph Near, David Darais and Kaitlin Boeckl - https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-privacy-
preserving-data-analysis-introduction-ourCopyright info at https://www.nist.gov/oism/copyrights, Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=150281038



Trade-Off with Utility

• Example: Counting Query

• 𝑓𝑓 𝐷𝐷 = number of people 
in 𝐷𝐷 with a given disease

• 𝑓𝑓 𝐷𝐷 = 𝑓𝑓 𝐷𝐷 + Lap ⁄1 𝜖𝜖



What is DP formalization actually providing?

• With different 𝜖𝜖 you get different points in the trade-off, but how 
much privacy am I getting from this?

Pr 𝑓𝑓 𝐷𝐷1 ∈ 𝑂𝑂 ≤ 𝑒𝑒𝜖𝜖 Pr 𝑓𝑓 𝐷𝐷2 ∈ 𝑂𝑂

• Not an absolute linking between noise and concrete privacy, that 
is too much application dependant.

• It helps to measure how much noise to provide to ensure the 
same “level of privacy” across different instances.
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• It also helps to measure how much noise to provide to ensure the 
same “level of privacy” across different points in the same 
algorithm.



DP in Protocols

• In the context of protocols choosing where to inject noise can 
affect how much performance you gain or lose.

• Example of vertically-partitioned clustering.
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Vertically-Partitioned Clustering

ID age visits score freq. bonus

1 23 1240 5 0.70 true

2 19 2256 7 0.55 false

3 47 3210 9 0.12 false

4 32 889 3 0.98 true



Alice Bob
𝑥𝑥 = 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 𝑦𝑦 = 𝑦𝑦1, … ,𝑦𝑦𝑛𝑛
𝑐𝑐 = 𝑐𝑐1, … , 𝑐𝑐𝑘𝑘

centroids initial choice
𝑌𝑌 ← Enc 𝑦𝑦

Bob encrypts his data

𝐷𝐷𝑗𝑗 ← 𝑥𝑥−𝑐𝑐𝑗𝑗𝑥𝑥
2 + 𝑌𝑌−𝑐𝑐𝑗𝑗

𝑦𝑦 2

 distance from each centroid

𝑀𝑀 ← argmin𝑗𝑗 𝐷𝐷𝑗𝑗
 one-hot encoding of clusters

𝑆𝑆𝑥𝑥 ← ∑𝑀𝑀𝑀𝑀 + 𝒩𝒩 0,𝜎𝜎𝜖𝜖2  
𝑆𝑆𝑦𝑦 ← ∑𝑀𝑀𝑌𝑌 + 𝒩𝒩 0,𝜎𝜎𝜖𝜖2  
𝑇𝑇 ← ∑𝑀𝑀  + 𝒩𝒩 0,𝜎𝜎𝜖𝜖2  

𝑠𝑠𝑥𝑥 ← Dec 𝑆𝑆𝑥𝑥

𝑌𝑌

𝑆𝑆𝑥𝑥 , 𝑆𝑆𝑦𝑦 ,𝑇𝑇

𝑠𝑠𝑦𝑦 ← Dec 𝑆𝑆𝑦𝑦
𝑡𝑡 ← Dec 𝑇𝑇
𝑐𝑐𝑥𝑥 ← ⁄𝑠𝑠𝑥𝑥 𝑡𝑡
𝑐𝑐𝑦𝑦 ← ⁄𝑠𝑠𝑦𝑦 𝑡𝑡𝑐𝑐𝑥𝑥 , 𝑐𝑐𝑦𝑦Go back to computation of 𝐷𝐷𝑗𝑗

if no convergence yet

cluster sizes

updated centroids

weighted sum for x-comp.
weighted sum for y-comp.
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Sensitivity = k
Tot. noise = n

Sensitivity S = B
Sensitivity T = 1
Tot. noise = k
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