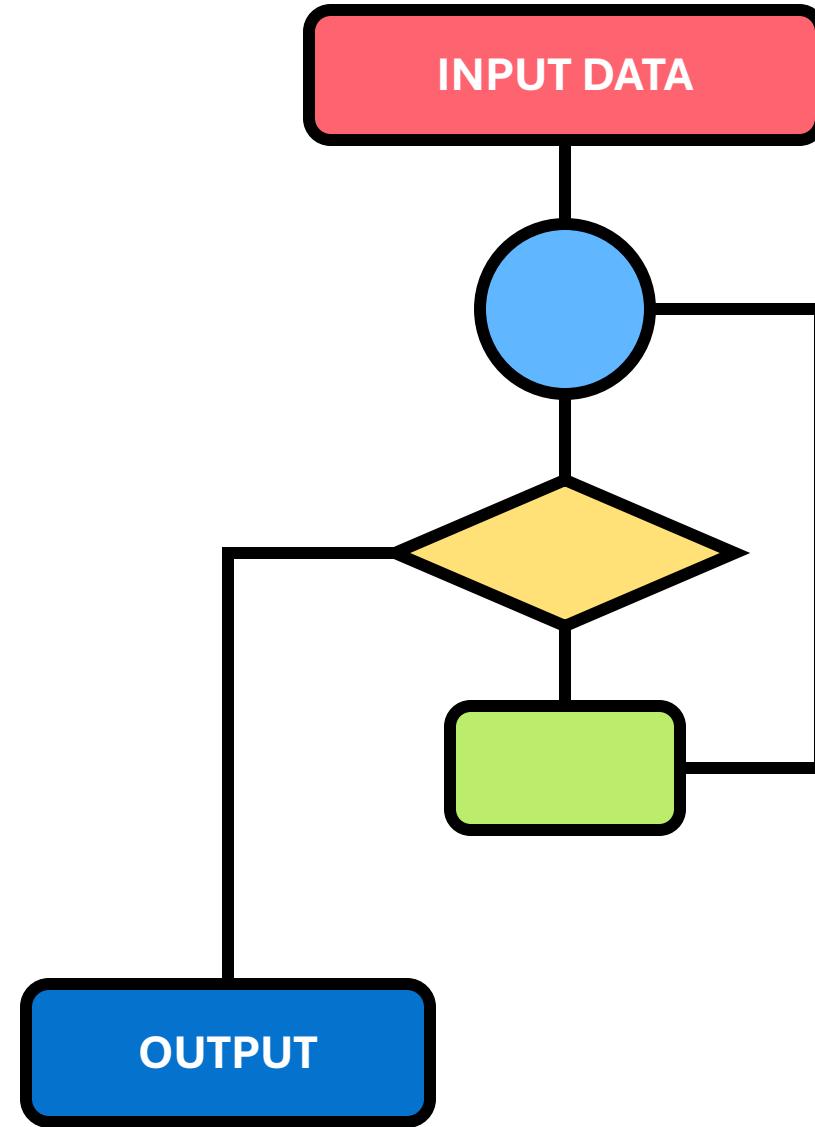


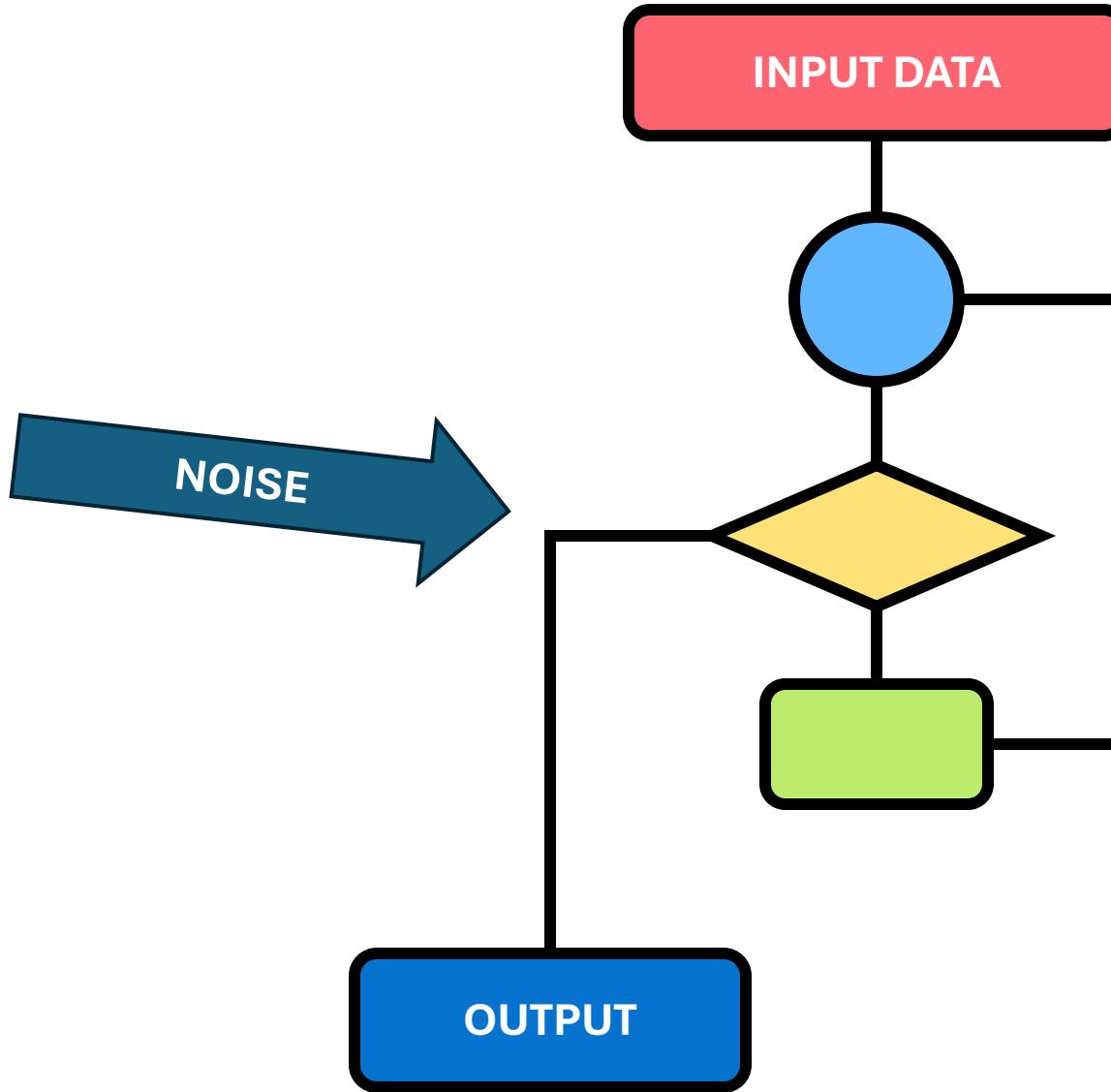
Differential Privacy in Action

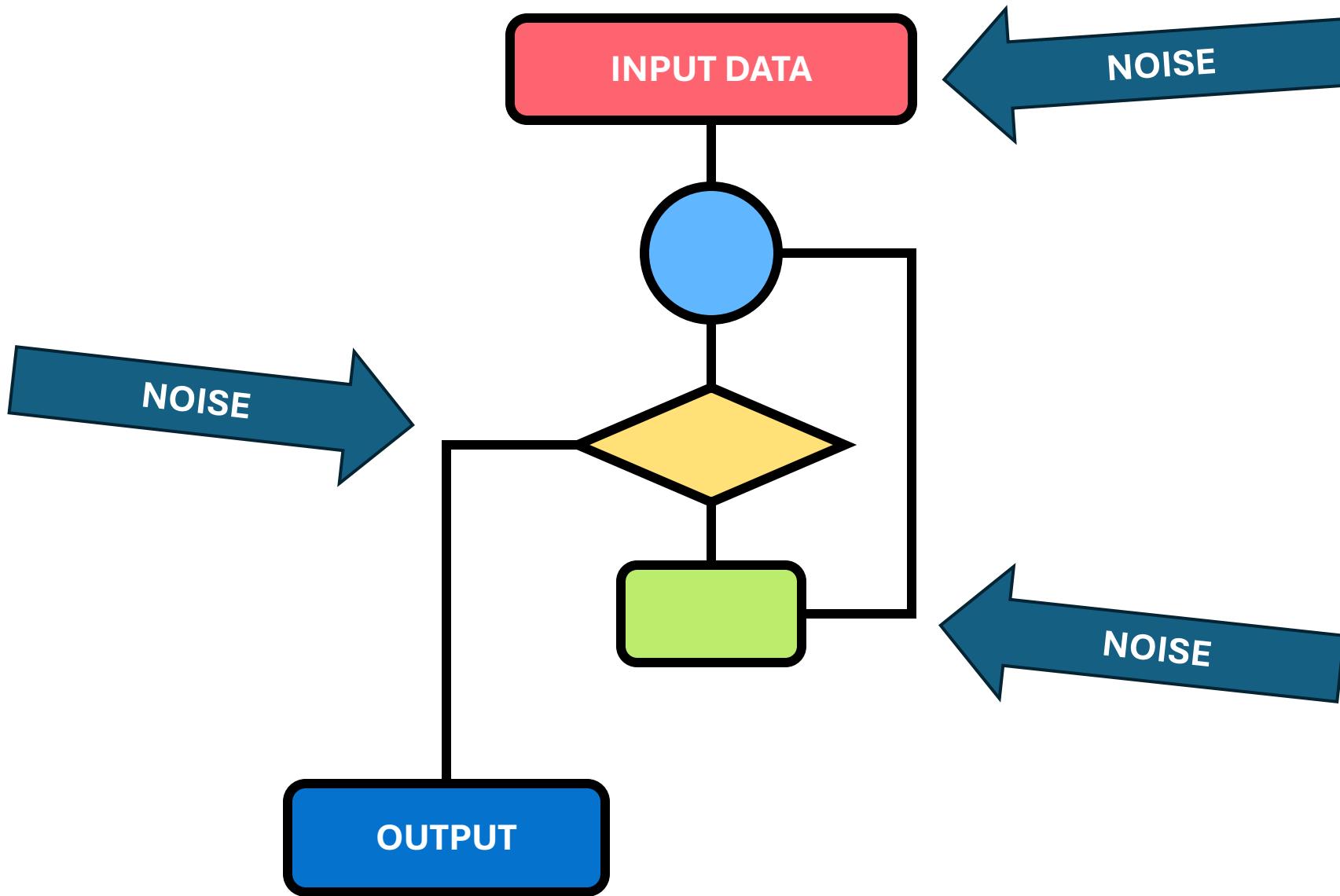
Federico Mazzone

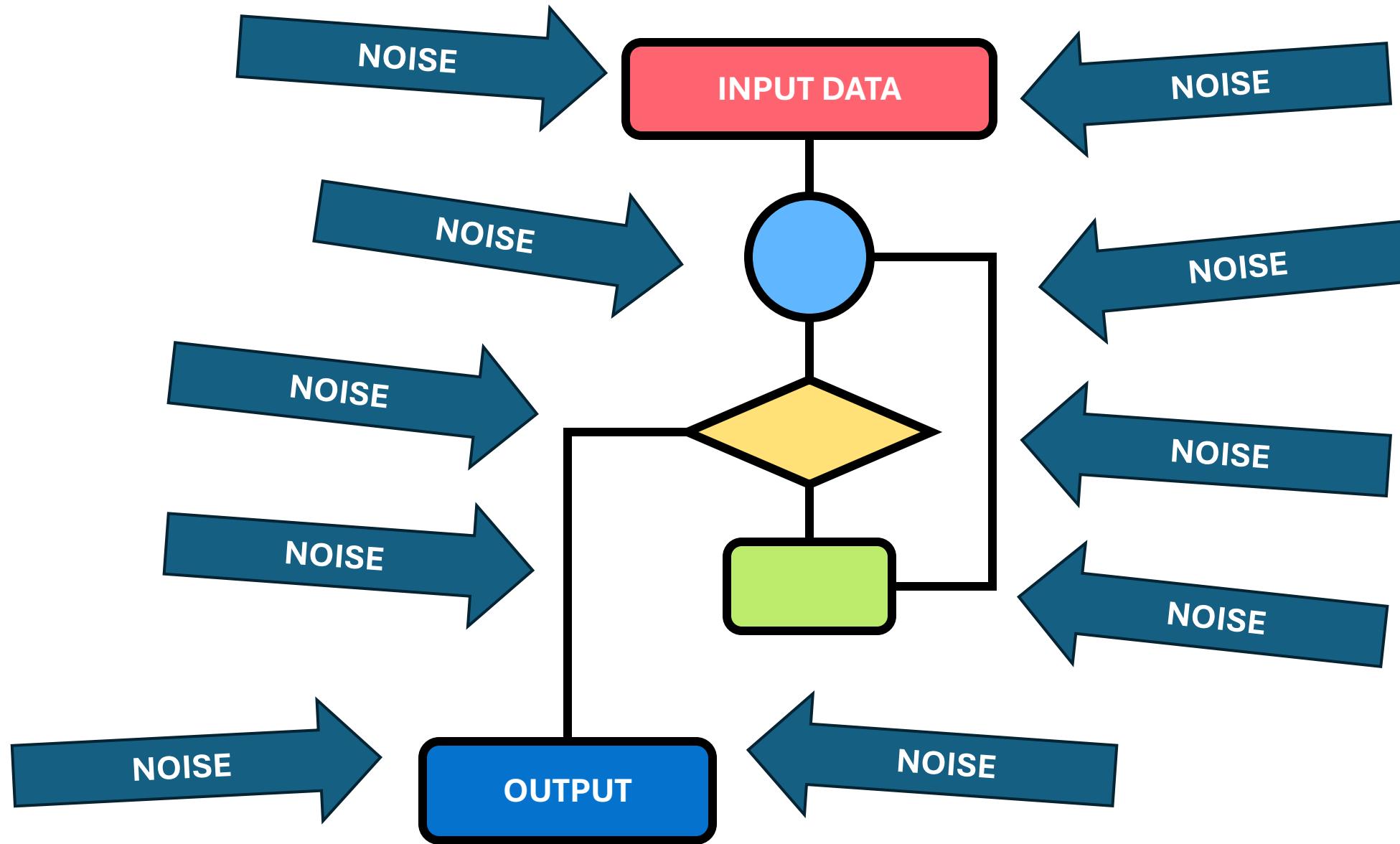
Cybersecurity Seminars

04 April, 2025









NOISE

iStock™
Credit: Jevtic

From Heuristics to Formal Privacy

Road to Differential Privacy

1965

**Randomized
Response (Warner)**
Simple noise-based
technique for survey
privacy

From Heuristics to Formal Privacy

Road to Differential Privacy

Data Perturbation Methods

Ad-hoc noise injection
in statistical databases
without formal
guarantees

1965

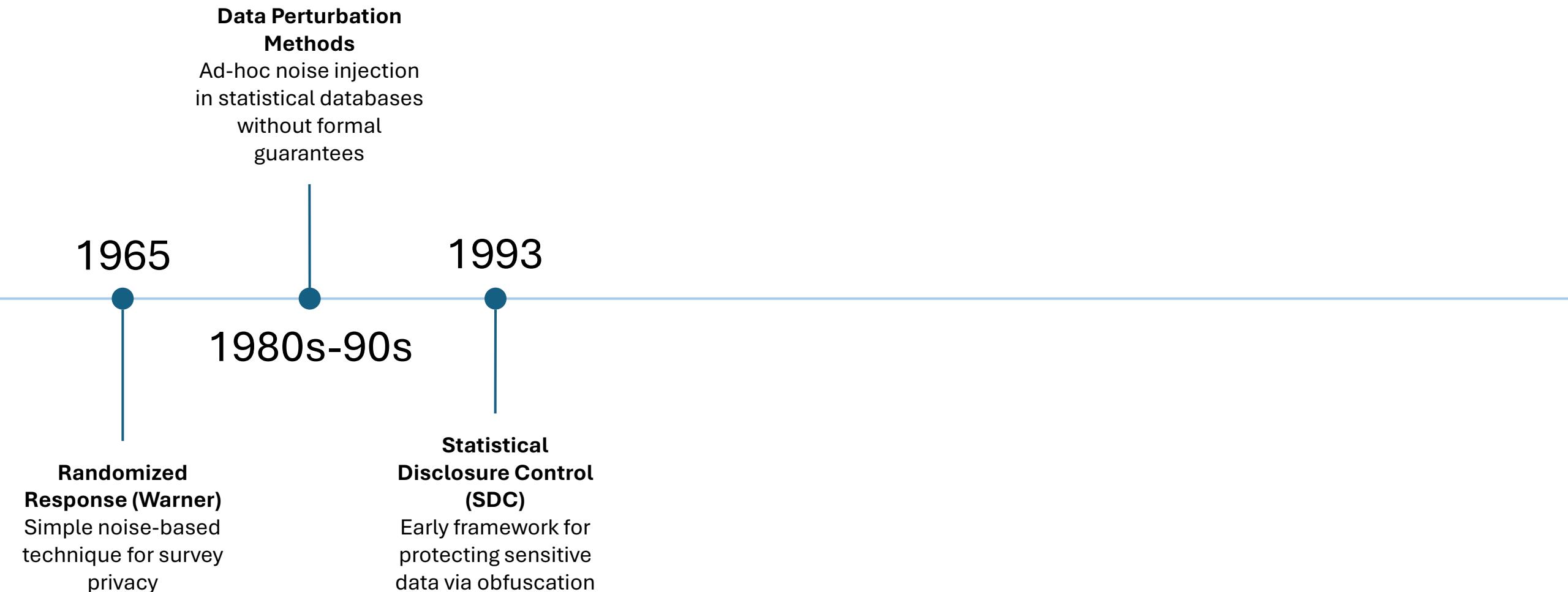
1980s-90s

Randomized

Response (Warner)
Simple noise-based
technique for survey
privacy

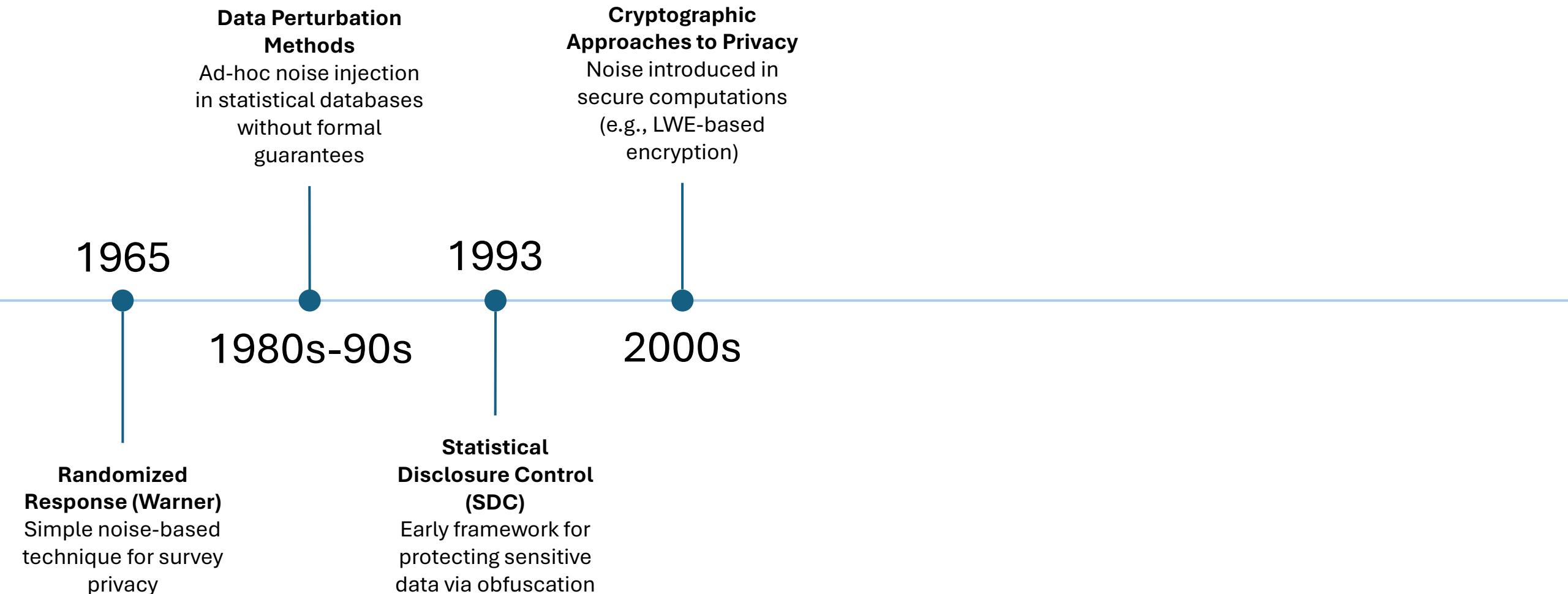
From Heuristics to Formal Privacy

Road to Differential Privacy

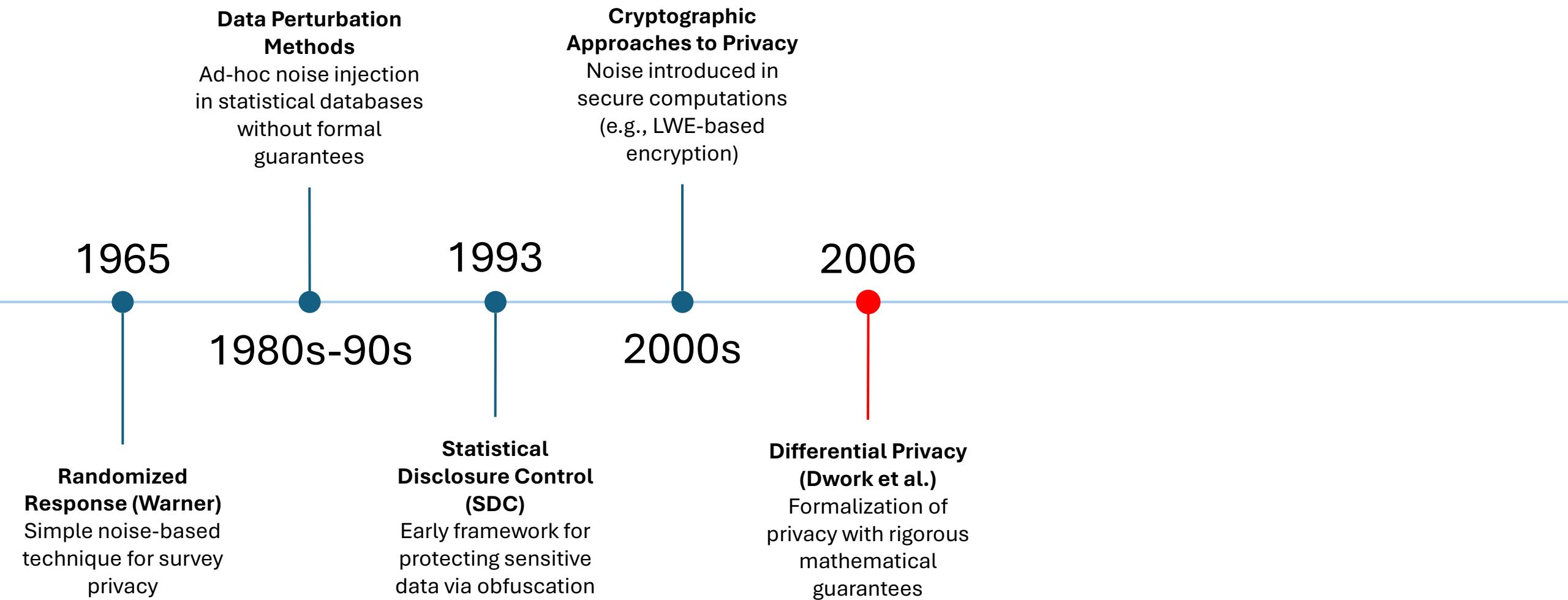


From Heuristics to Formal Privacy

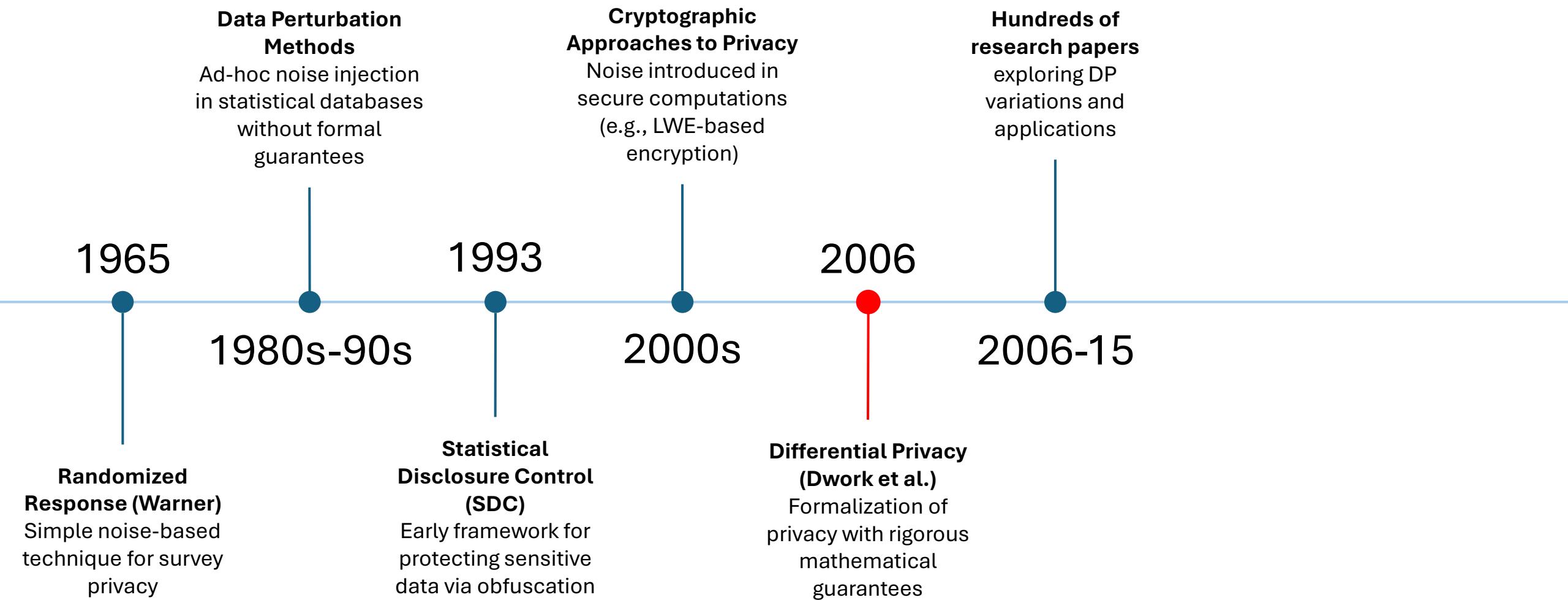
Road to Differential Privacy



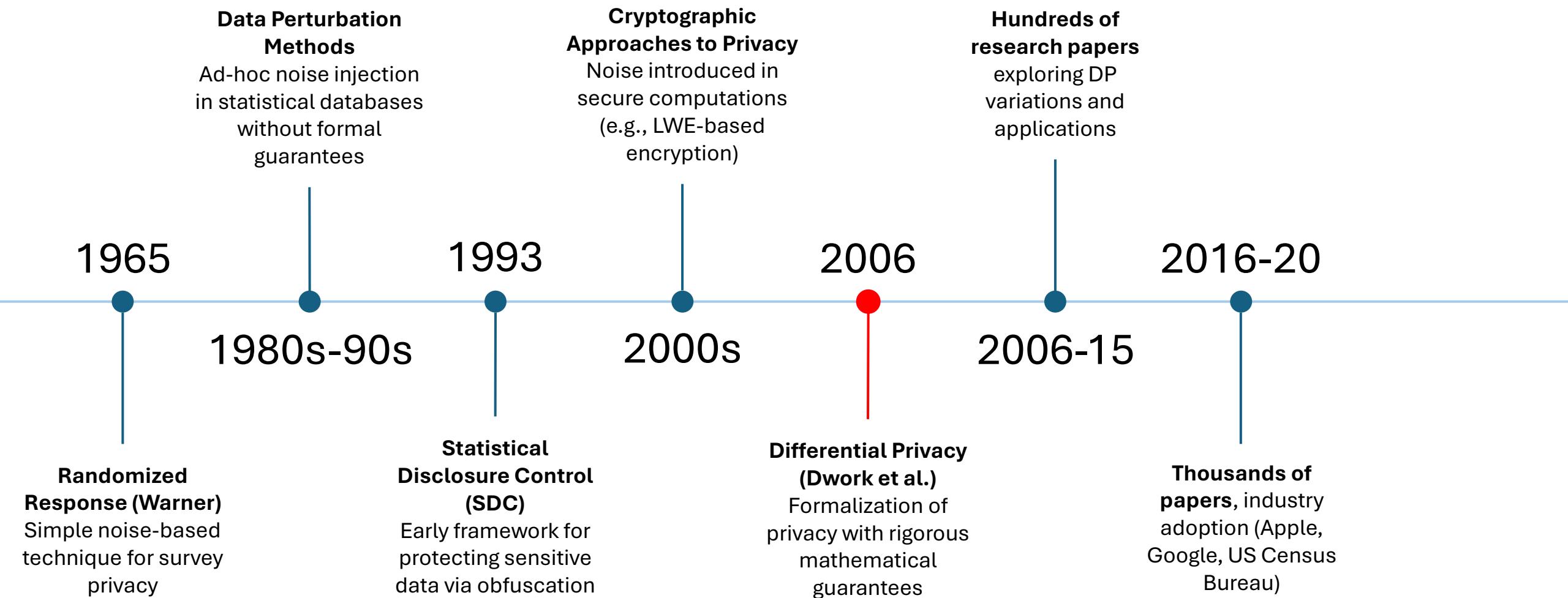
From Heuristics to Formal Privacy Road to Differential Privacy



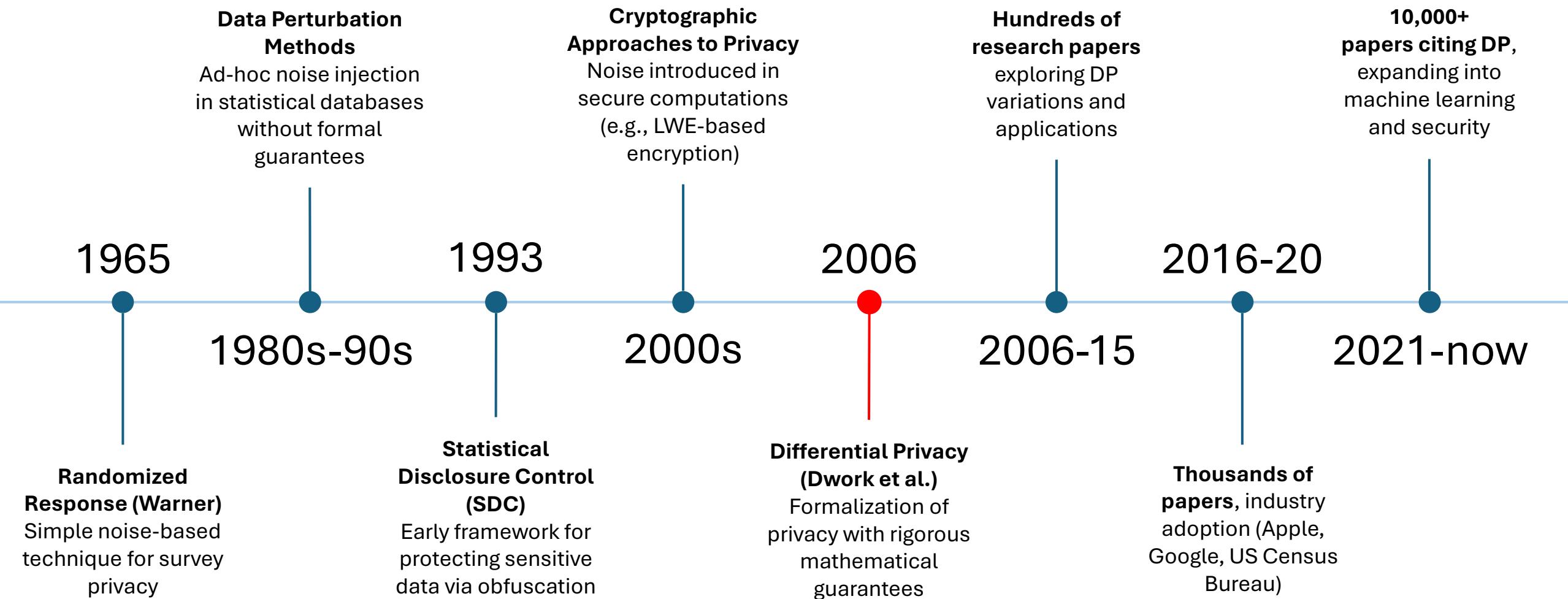
From Heuristics to Formal Privacy Road to Differential Privacy



From Heuristics to Formal Privacy Road to Differential Privacy

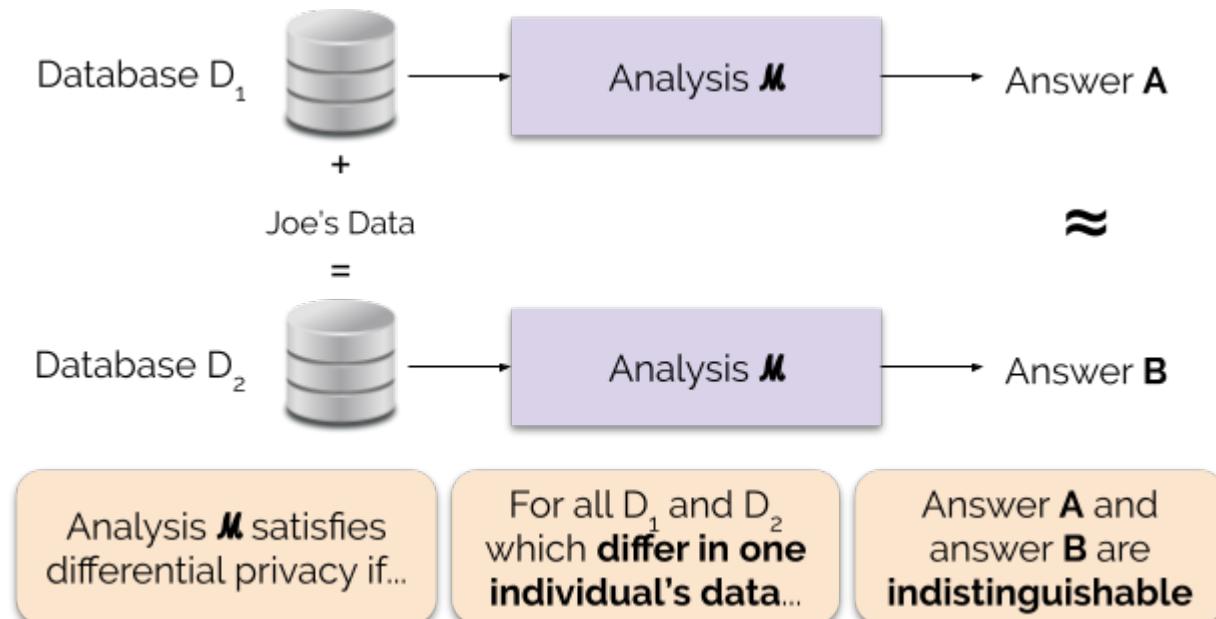


From Heuristics to Formal Privacy Road to Differential Privacy



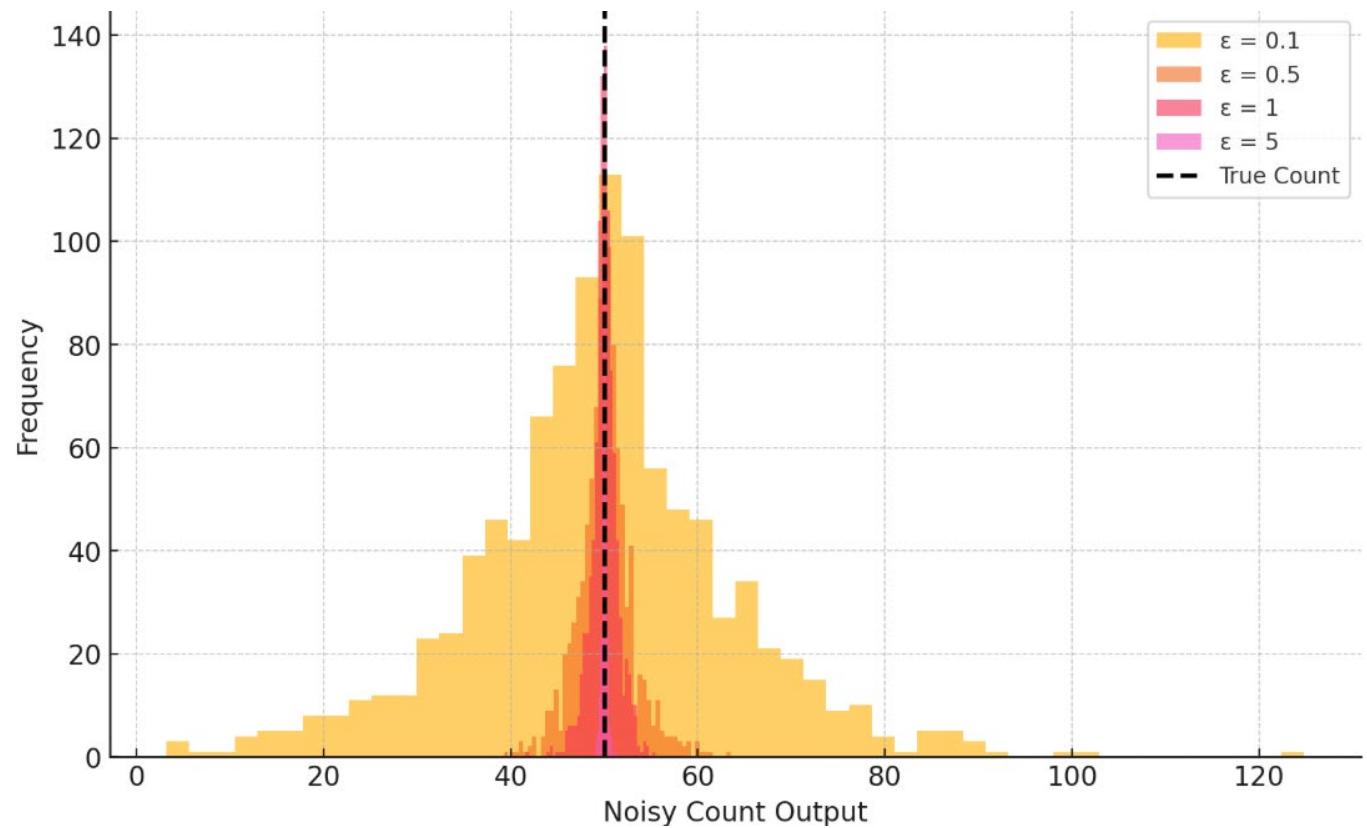
How Does DP Work?

- Differential privacy adds noise to a function, hiding how much an individual data point can influence the result.



Trade-Off with Utility

- Example: Counting Query
- $f(D)$ = number of people in D with a given disease
- $\tilde{f}(D) = f(D) + \text{Lap}(1/\epsilon)$



What is DP formalization actually providing?

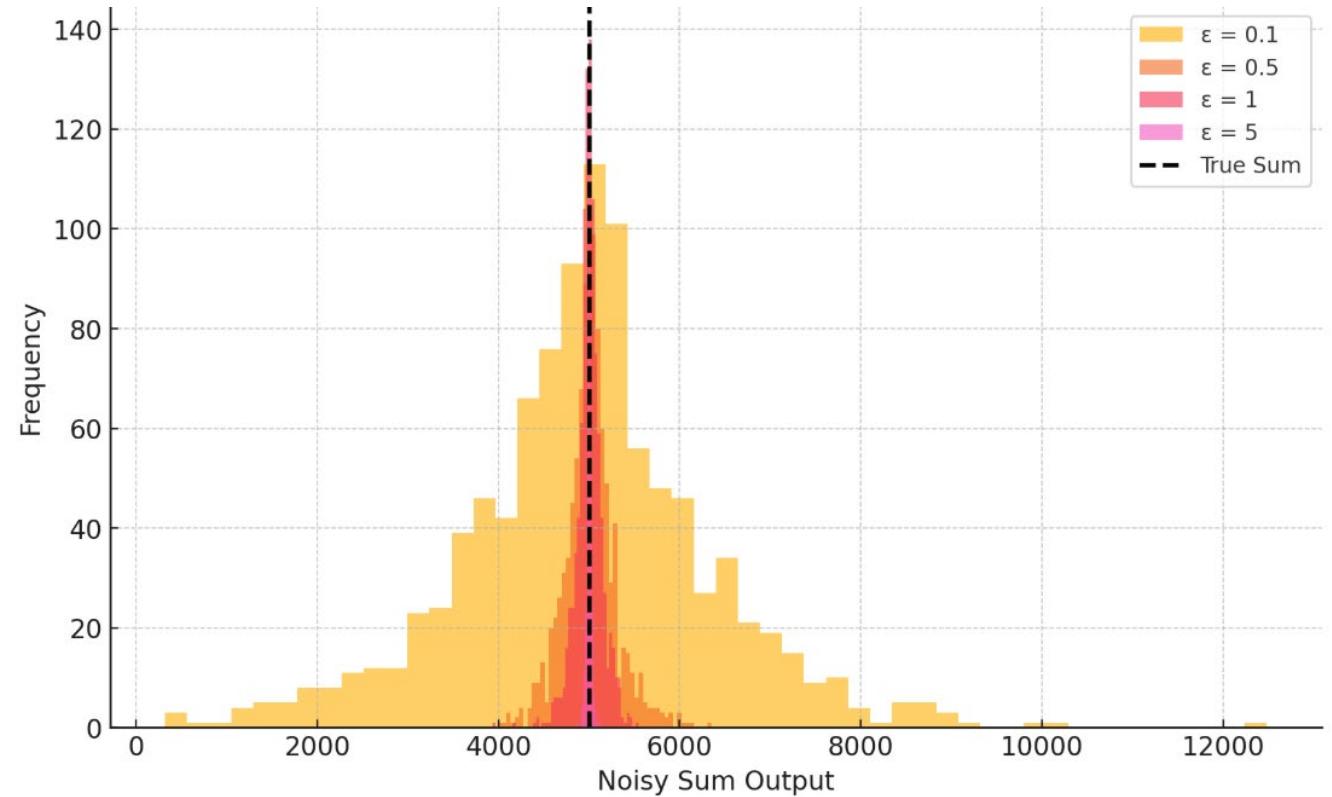
- With different ϵ you get different points in the trade-off, but how much privacy am I getting from this?

$$\Pr[f(D_1) \in O] \leq e^\epsilon \Pr[f(D_2) \in O]$$

- Not an absolute linking between noise and concrete privacy, that is too much application dependant.
- It helps to measure how much noise to provide to ensure the same “level of privacy” across different instances.

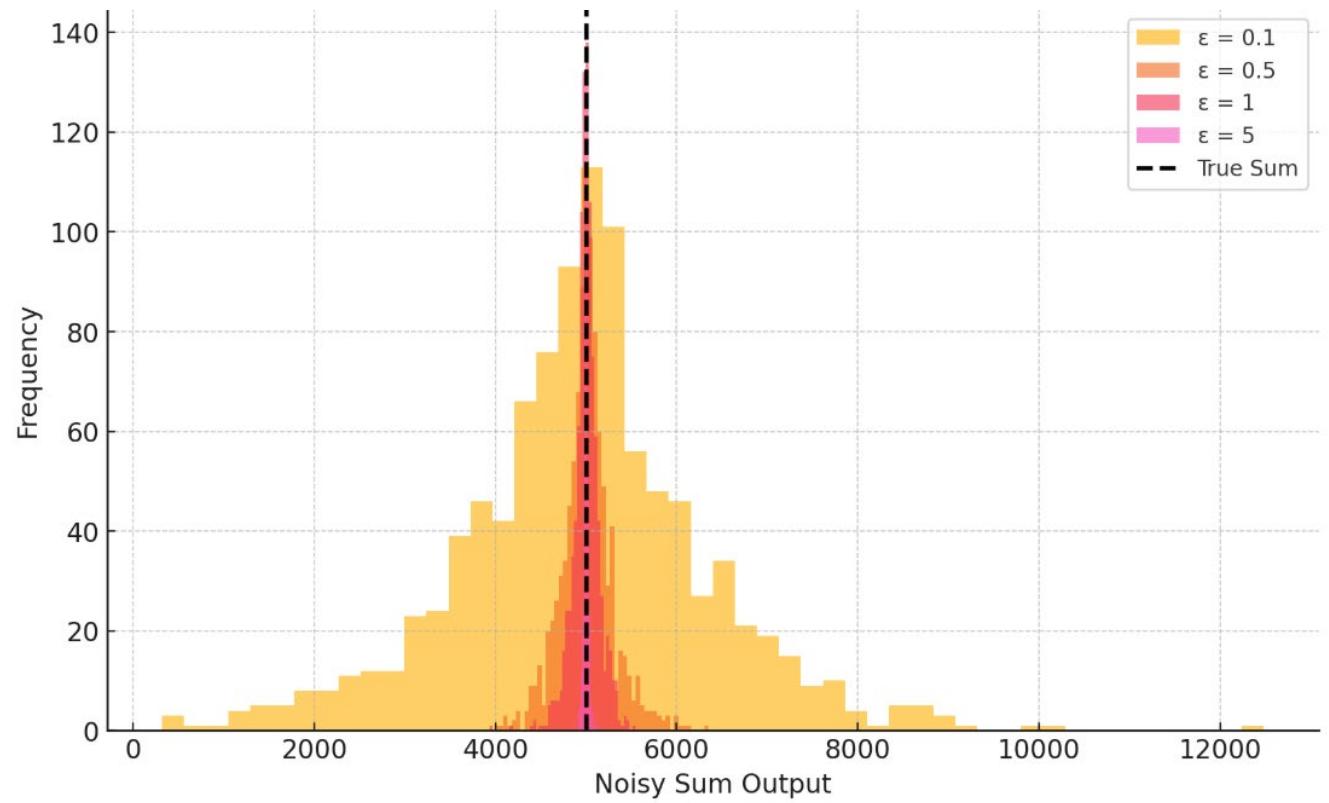
What is DP formalization actually providing?

- Example: Sum Query
- $f(D)$ = sum of people's ages
- $\tilde{f}(D) = f(D) + \text{Lap}(120/\epsilon)$

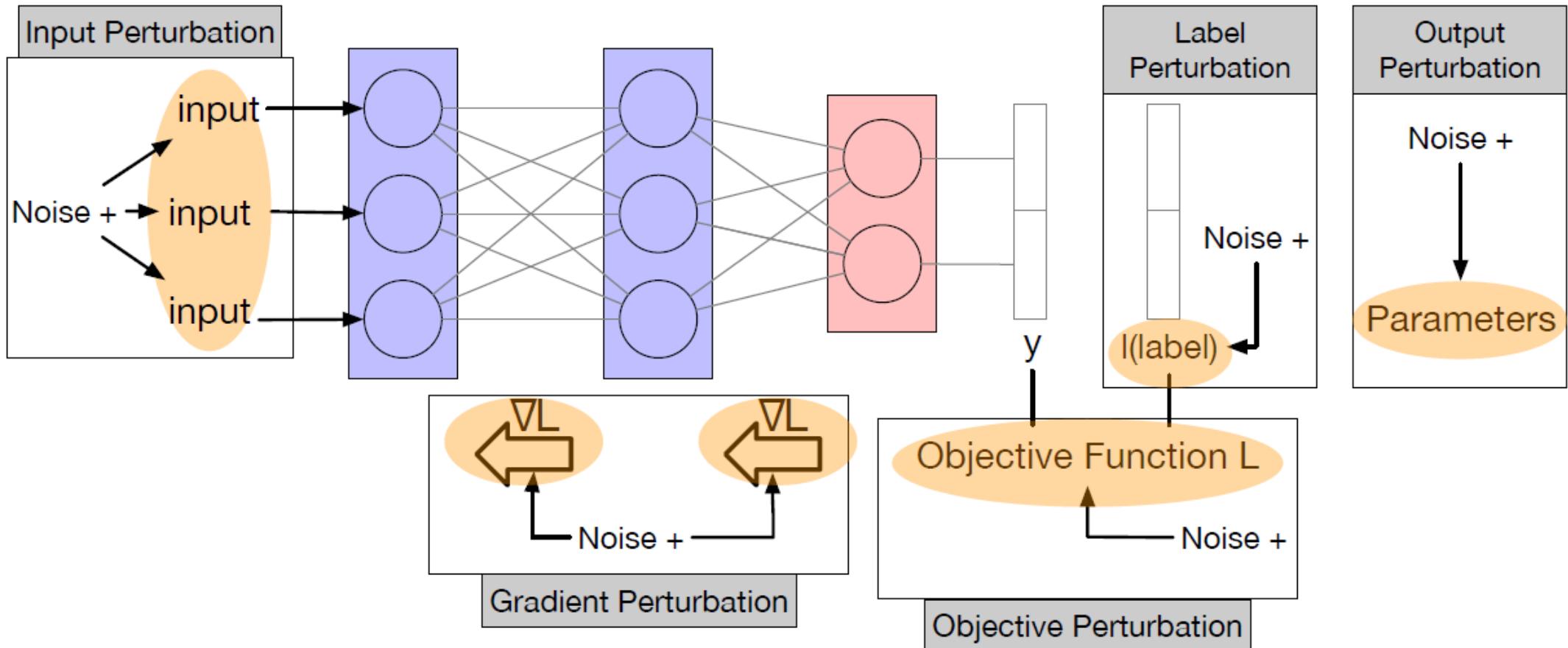


What is DP formalization actually providing?

- Example: Sum Query
- $f(D)$ = sum of people's ages
- $\tilde{f}(D) = f(D) + \text{Lap}(120/\epsilon)$
- $\tilde{f}(D) = f(D) + \text{Lap}(\Delta/\epsilon)$
- If a function is highly sensitive, it means the output is heavily dependent on individual inputs.



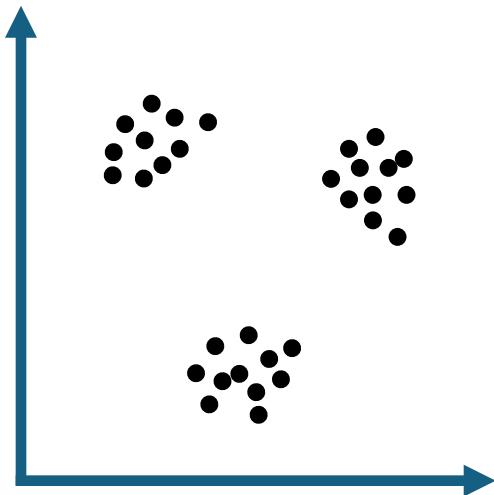
- It also helps to measure how much noise to provide to ensure the same “level of privacy” across different points in the same algorithm.



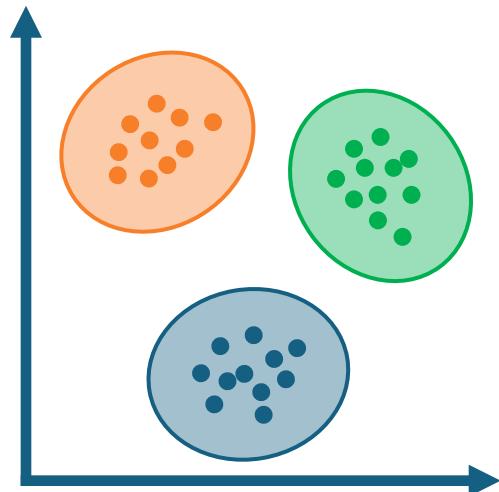
DP in Protocols

- In the context of protocols choosing where to inject noise can affect how much performance you gain or lose.
- Example of vertically-partitioned clustering.

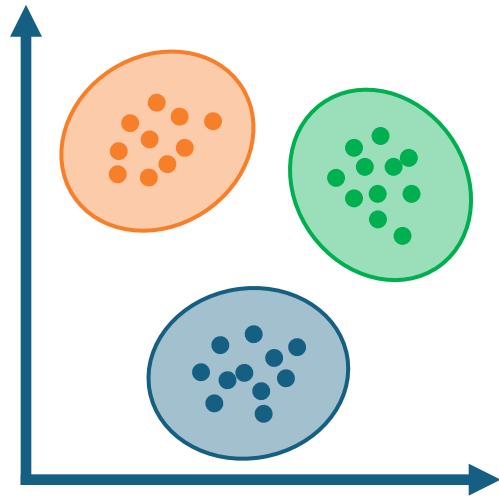
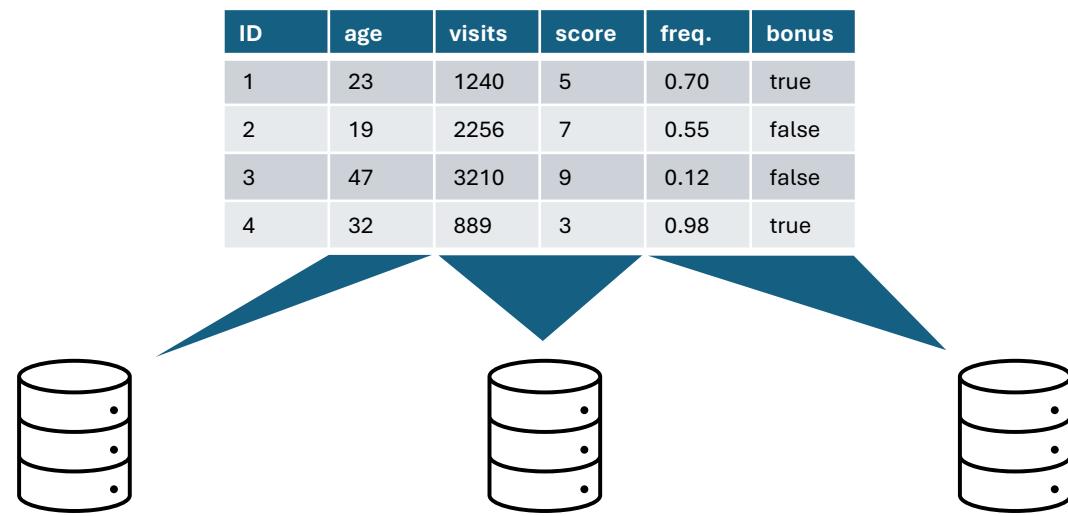
Vertically-Partitioned Clustering



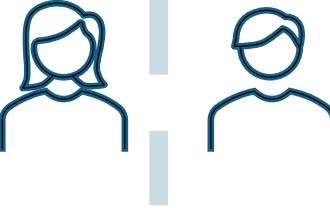
Vertically-Partitioned Clustering



Vertically-Partitioned Clustering



Alice



Bob

$x = (x_1, \dots, x_n)$
 $c = (c_1, \dots, c_k)$
centroids initial choice

$D_j \leftarrow (x - c_j^x)^2 + (Y - c_j^y)^2$
distance from each centroid

$M \leftarrow \operatorname{argmin}_j D_j$
one-hot encoding of clusters

$S_x \leftarrow \sum Mx + \mathcal{N}(0, \sigma_\epsilon^2)$
 $S_y \leftarrow \sum MY + \mathcal{N}(0, \sigma_\epsilon^2)$
 $T \leftarrow \sum M + \mathcal{N}(0, \sigma_\epsilon^2)$

S_x, S_y, T

Go back to computation of D_j
if no convergence yet

$y = (y_1, \dots, y_n)$
 $Y \leftarrow \operatorname{Enc}(y)$
Bob encrypts his data

$s_x \leftarrow \operatorname{Dec}(S_x)$
 $s_y \leftarrow \operatorname{Dec}(S_y)$
 $t \leftarrow \operatorname{Dec}(T)$
 $c^x \leftarrow s_x/t$
 $c^y \leftarrow s_y/t$

weighted sum for x-comp.
weighted sum for y-comp.
cluster sizes
updated centroids

Alice

Bob

$$x = (x_1, \dots, x_n)$$

$c = (c_1, \dots, c_k)$
centroids initial choice

$$D_j \leftarrow (x - c_j^x)^2 + (Y - c_j^y)^2$$

distance from each centroid

$M \leftarrow \operatorname{argmin}_j D_j$
one-hot encoding of clusters

$$S_x \leftarrow \sum Mx + \mathcal{N}(0, \sigma_\epsilon^2)$$

$$S_y \leftarrow \sum MY + \mathcal{N}(0, \sigma_\epsilon^2)$$

$$T \leftarrow \sum M + \mathcal{N}(0, \sigma_\epsilon^2)$$

$$S_x, S_y, T$$

Go back to computation of D_j
if no convergence yet

$$c^x, c^y$$

$$y = (y_1, \dots, y_n)$$

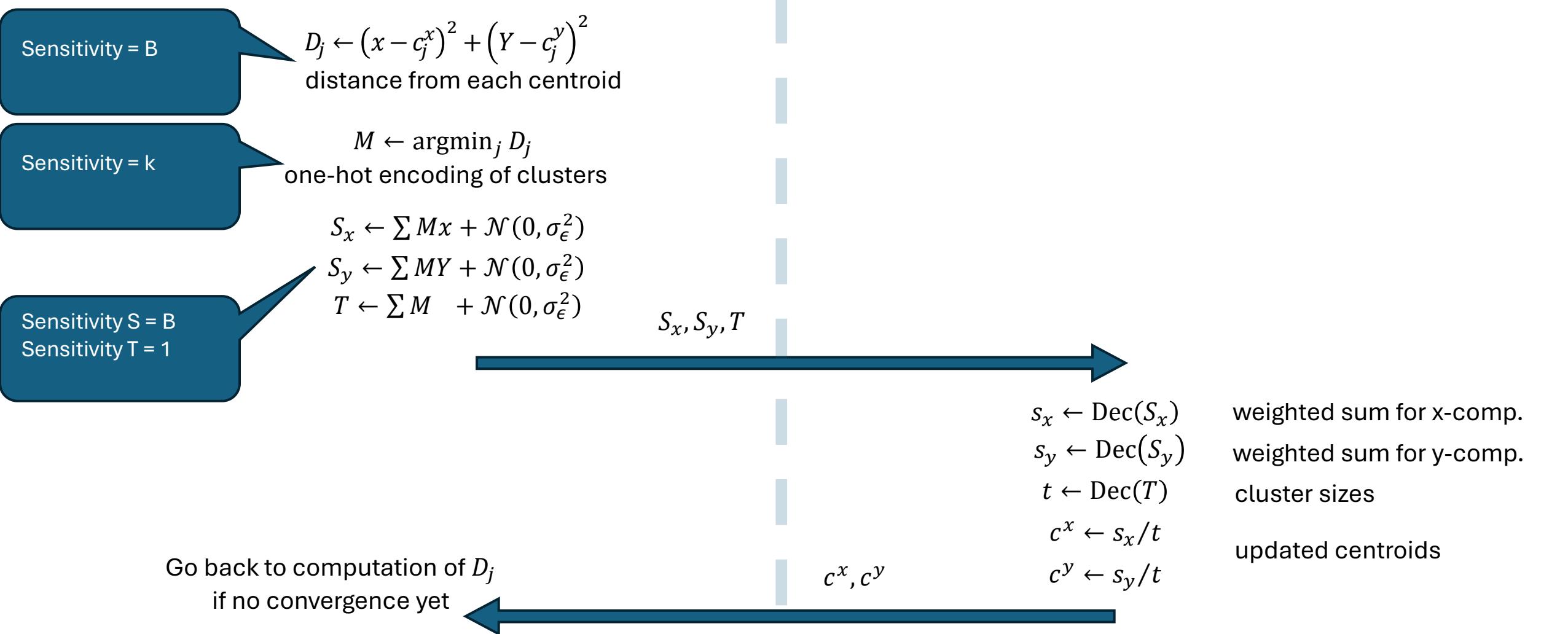
$Y \leftarrow \operatorname{Enc}(y)$
Bob encrypts his data

$$s_x \leftarrow \operatorname{Dec}(S_x)$$
$$s_y \leftarrow \operatorname{Dec}(S_y)$$
$$t \leftarrow \operatorname{Dec}(T)$$
$$c^x \leftarrow s_x/t$$
$$c^y \leftarrow s_y/t$$

weighted sum for x-comp.
weighted sum for y-comp.
cluster sizes
updated centroids

Alice

Bob



Alice

Bob

Sensitivity = B
Tot. noise = B * n

$$y = (y_1, \dots, y_n)$$

$$Y \leftarrow \text{Enc}(y)$$

Bob encrypts his data

$$x = (x_1, \dots, x_n)$$

$c = (c_1, \dots, c_k)$
centroids initial choice

$$D_j \leftarrow (x - c_j^x)^2 + (Y - c_j^y)^2$$

distance from each centroid

$$M \leftarrow \text{argmin}_j D_j$$

one-hot encoding of clusters

$$S_x \leftarrow \sum Mx + \mathcal{N}(0, \sigma_\epsilon^2)$$

$$S_y \leftarrow \sum MY + \mathcal{N}(0, \sigma_\epsilon^2)$$

$$T \leftarrow \sum M + \mathcal{N}(0, \sigma_\epsilon^2)$$

$$S_x, S_y, T$$

Sensitivity = B
Tot. noise = B * n * k

Sensitivity = k
Tot. noise = n

Sensitivity S = B
Sensitivity T = 1
Tot. noise = k

Go back to computation of D_j
if no convergence yet

$$s_x \leftarrow \text{Dec}(S_x)$$

$$s_y \leftarrow \text{Dec}(S_y)$$

$$t \leftarrow \text{Dec}(T)$$

$$c^x \leftarrow s_x/t$$

$$c^y \leftarrow s_y/t$$

weighted sum for x-comp.

weighted sum for y-comp.

cluster sizes

updated centroids