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How Does DP Work?

* Differential privacy adds noise to a function, hiding how much an
Individual data point can influence the result.

Database D, =~ —— Analysis M Answer A
e
+
Joe's Data I~
Database D, =~ — Analysis M Answer B
o
Analysis M satisfies Fgr . .Dl ar:l-::l D, ATETTETENR
differential privacy if which differ in one answer B are
individual's data.. indistinguishable

Image by Joseph Near, David Darais and Kaitlin Boeckl - https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-privacy-
preserving-data-analysis-introduction-ourCopyright info at https://www.nist.gov/oism/copyrights, Public Domain,
https://commons.wikimedia.org/w/index.php?curid=150281038



Trade-Off with Utility

* Example: Counting Query
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What is DP formalization actually providing?

* With different € you get different points in the trade-off, but how
much privacy am | getting from this?

Pr[f(D;) € O] < e Pr|f(D,) € 0]

* Not an absolute linking between noise and concrete privacy, that
Is too much application dependant.

* |t helps to measure how much noise to provide to ensure the
same “level of privacy” across different instances.
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* Example: Sum Query
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What is DP formalization actually providing?

* Example: Sum Query
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* |t also helps to measure how much noise to provide to ensure the
same “level of privacy” across different points in the same

algorithm.
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DP Iin Protocols

* |In the context of protocols choosing where to inject noise can
affect how much performance you gain or lose.

* Example of vertically-partitioned clustering.
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Alice D Bob

X = (X1, e, Xn)

Yy =1 Vn)
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x) 2 y 2
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if no convergence yet ‘
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Alice D Bob
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